82 research outputs found

    Surgical Cavity Constriction and Local Progression Between Resection and Adjuvant Radiosurgery for Brain Metastases

    Full text link
    Stereotactic radiosurgery (SRS) to a surgical cavity after brain metastasis resection is a promising treatment for improving local control. The optimal timing of adjuvant SRS, however, has yet to be determined. Changes in resection cavity volume and local progression in the interval between surgery and SRS are likely important factors in deciding when to proceed with adjuvant SRS. We conducted a retrospective review of patients with a brain metastasis treated with surgical resection followed by SRS to the resection cavity. Post-operative and pre-radiosurgery magnetic resonance imaging (MRI) was reviewed for evidence of cavity volume changes, amount of edema, and local tumor progression. Resection cavity volume and edema volume were measured using volumetric analysis. We identified 21 consecutive patients with a brain metastasis treated with surgical resection and radiosurgery to the resection cavity. Mean age was 57 yrs. The most common site of metastasis was the frontal lobe (38%), and the most common primary neoplasms were lung adenocarcinoma and melanoma (24% each). The mean postoperative resection cavity volume was 7.8 cm(3) and shrank to a mean of 4.5 cm(3) at the time of repeat imaging for radiosurgical planning (median 41 days after initial post-operative MRI), resulting in a mean reduction in cavity volume of 43%. Patients who underwent pre-SRS imaging within 1 month of their initial post-operative MRI had a mean volume reduction of 13% compared to 61% in those whose pre-SRS imaging was ≥1 month (p=0.0003). Post-resection edema volume was not related to volume reduction (p=0.59). During the interval between MRIs, 52% of patients showed evidence of tumor progression within the resection cavity wall. There was no significant difference in local recurrence if the interval between resection and radiosurgery was <1 month (n=8) versus ≥1 month (n=13, p=0.46). These data suggest that the surgical cavity after brain metastasis resection constricts over time with greater constriction seen in patients whose pre-SRS imaging is ≥1 month after initial post-operative imaging. Given that there was no difference in local recurrence rate, the data suggest there is benefit in waiting in order to treat a smaller resection cavity

    Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy.

    Get PDF
    Anti-angiogenic therapies for cancer such as VEGF neutralizing antibody bevacizumab have limited durability. While mechanisms of resistance remain undefined, it is likely that acquired resistance to anti-angiogenic therapy will involve alterations of the tumor microenvironment. We confirmed increased tumor-associated macrophages in bevacizumab-resistant glioblastoma patient specimens and two novel glioblastoma xenograft models of bevacizumab resistance. Microarray analysis suggested downregulated macrophage migration inhibitory factor (MIF) to be the most pertinent mediator of increased macrophages. Bevacizumab-resistant patient glioblastomas and both novel xenograft models of resistance had less MIF than bevacizumab-naive tumors, and harbored more M2/protumoral macrophages that specifically localized to the tumor edge. Xenografts expressing MIF-shRNA grew more rapidly with greater angiogenesis and had macrophages localizing to the tumor edge which were more prevalent and proliferative, and displayed M2 polarization, whereas bevacizumab-resistant xenografts transduced to upregulate MIF exhibited the opposite changes. Bone marrow-derived macrophage were polarized to an M2 phenotype in the presence of condition-media derived from bevacizumab-resistant xenograft-derived cells, while recombinant MIF drove M1 polarization. Media from macrophages exposed to bevacizumab-resistant tumor cell conditioned media increased glioma cell proliferation compared with media from macrophages exposed to bevacizumab-responsive tumor cell media, suggesting that macrophage polarization in bevacizumab-resistant xenografts is the source of their aggressive biology and results from a secreted factor. Two mechanisms of bevacizumab-induced MIF reduction were identified: (1) bevacizumab bound MIF and blocked MIF-induced M1 polarization of macrophages; and (2) VEGF increased glioma MIF production in a VEGFR2-dependent manner, suggesting that bevacizumab-induced VEGF depletion would downregulate MIF. Site-directed biopsies revealed enriched MIF and VEGF at the enhancing edge in bevacizumab-naive patients. This MIF enrichment was lost in bevacizumab-resistant glioblastomas, driving a tumor edge M1-to-M2 transition. Thus, bevacizumab resistance is driven by reduced MIF at the tumor edge causing proliferative expansion of M2 macrophages, which in turn promotes tumor growth

    Guidelines for the use and interpretation of assays for monitoring autophagy (2nd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardiz- ing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new tech- nologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in differ- ent organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes..

    Surgical Cavity Constriction and Local Progression Between Resection and Adjuvant Radiosurgery for Brain Metastases.

    No full text
    Stereotactic radiosurgery (SRS) to a surgical cavity after brain metastasis resection is a promising treatment for improving local control. The optimal timing of adjuvant SRS, however, has yet to be determined. Changes in resection cavity volume and loca

    Results of Gamma Knife surgery for Cushing's disease

    No full text

    Update on the management of recurrent Cushing's disease

    No full text
    corecore