88 research outputs found

    Heart on a chip: Micro-nanofabrication and microfluidics steering the future of cardiac tissue engineering

    Get PDF
    The evolution of micro and nanofabrication approaches significantly spurred the advancements of cardiac tissue engineering over the last decades. Engineering in the micro and nanoscale allows for the rebuilding of heart tissues using cardiomyocytes. The breakthrough of human induced pluripotent stem cells expanded this field rendering the development of human tissues from adult cells possible, thus avoiding the ethical issues of the usage of embryonic stem cells but also creating patient-specific human engineered tissues. In the case of the heart, the combination of cardiomyocytes derived from human induced pluripotent stem cells and micro/nano engineering devices gave rise to new therapeutic approaches of cardiac diseases. In this review, we survey the micro and nanofabrication methods used for cardiac tissue engineering, ranging from clean room-based patterning (such as photolithography and plasma etching) to electrospinning and additive manufacturing. Subsequently, we report on the main approaches of microfluidics for cardiac culture systems, the so-called “Heart on a Chip”, and we assess their efficacy for future development of cardiac disease modeling and drug screening platforms

    Vimentin as a target for the treatment of COVID-19

    Get PDF
    We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection

    Impaired Skeletal Muscle Repair after Ischemia-Reperfusion Injury in Mice

    Get PDF
    Ischemia/reperfusion (IR) injury can induce skeletal muscle fibre death and subsequent regeneration. By 14 days, absolute and specific maximal forces and fatigue resistance in ischemic/reperfused soleus muscles were still reduced (−89%, −81%, and −75%, resp.) as compared to control muscles (P < .05). The decrease of these parameters in ischemic/reperfused muscle was much greater than that of myotoxic injured muscles (−12%, −11%, and −19%; P < .05). In addition, at 14 days ischemic/reperfused muscle structure was still abnormal, showing small muscle fibres expressing neonatal myosin heavy chain and large necrotic muscle fibres that were not observed in myotoxin treated muscles. By 56 days, in contrast to myotoxin treated muscles, specific maximal force and muscle weight of the ischemic/reperfused muscles did not fully recover (P < .05). This differential recovery between ischemic/reperfused and myotoxin treated muscles was not related to the differences in the initial cell death, loss of satellite cells after injury, expression of growth factors (IGF1, IGF2..), or capillary density in regenerating muscles. In conclusion, our results demonstrate that IR injury in mice induces long term detrimental effects in skeletal muscles and that the recovery following IR injury was delayed for yet unknown reasons as compared to myotoxic injury

    Gonad-related factors promote muscle performance gain during postnatal development in male and female mice

    Get PDF
    To better define the role of male and female gonad-related factors (MGRF, presumably testosterone, and FGRF, presumably estradiol, respectively) on mouse hindlimb skeletal muscle contractile performance/function gain during postnatal development, we analyzed the effect of castration initiated before puberty in male and female mice. We found that muscle absolute and specific (normalized to muscle weight) maximal forces were decreased in 6-mo-old male and female castrated mice compared with age- and sex-matched intact mice, without alteration in neuromuscular transmission. Moreover, castration decreased absolute and specific maximal powers, another important aspect of muscle performance, in 6-mo-old males, but not in females. Absolute maximal force was similarly reduced by castration in 3-mo-old muscle fiber androgen receptor (AR)-deficient and wild-type male mice, indicating that the effect of MGRF was muscle fiber AR independent. Castration reduced the muscle weight gain in 3-mo mice of both sexes and in 6-mo females but not in males. We also found that bone morphogenetic protein signaling through Smad1/5/9 was not altered by castration in atrophic muscle of 3-mo-old mice of both sexes. Moreover, castration decreased the sexual dimorphism regarding muscle performance. Together, these results demonstrated that in the long term, MGRF and FGRF promote muscle performance gain in mice during postnatal development, independently of muscle growth in males, largely via improving muscle contractile quality (force and power normalized), and that MGFR and FGRF also contribute to sexual dimorphism. However, the mechanisms underlying MGFR and FGRF actions remain to be determined

    Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium

    Get PDF
    The discrepancy between the functional improvements yielded experimentally by skeletal myoblasts (SM) transplanted in infarcted myocardium and the paucity of their long-term engraftment has raised the hypothesis of cell-mediated paracrine mechanisms. Methods and results: We analyzed gene expression and growth factors released by undifferentiated human SM (CD56+), myotubes (SM cultured until confluence) and fibroblasts-like cells (CD56−). Gene expression revealed up-regulation of pro-angiogenic (PGF), antiapoptotics (BAG-1, BCL-2), heart development (TNNT2, TNNC1) and extracellular matrix remodelling (MMP-2, MMP-7) genes in SM. In line with the gene expression profile, the analysis of culture supernatants of SM by ELISA identified the release of growth factors involved in angiogenesis (VEGF, PIGF, angiogenin, angiopoietin, HGF and PDGF-BB) as well as proteases involved in matrix remodelling (MMP2, MMP9 and MMP10) and their inhibitors (TIMPs). Culture of smooth muscle cells (SMC), cardiomyocytes (HL-1) and human umbilical vein endothelial cells (HUVECs) with SM-released conditioned media demonstrated an increased proliferation of HUVEC, SMC and cardiomyocytes (pb0.05) and a decrease in apoptosis of cardiomyocytes (pb0.05). Analysis of nude rats transplanted with human SM demonstrated expression of human-specific MMP-2, TNNI3, CNN3, PGF, TNNT2, PAX7, TGF-β, and IGF-1 1 month after transplant. Conclusions: Our data support the paracrine hypothesis whereby myoblast-secreted factors may contribute to the beneficial effects of myogenic cell transplantation in infarcted myocardium. © 2008 European Society of Cardiology. Published by Elsevie

    Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skeletal muscles are composed of heterogeneous collections of muscle fiber types, the arrangement of which contributes to a variety of functional capabilities in many muscle types. Furthermore, skeletal muscles can adapt individual myofibers under various circumstances, such as disease and exercise, by changing fiber types. This study was performed to examine the influence of dystrophin deficiency on fiber type composition of skeletal muscles in canine X-linked muscular dystrophy in Japan (CXMD<sub>J</sub>), a large animal model for Duchenne muscular dystrophy.</p> <p>Methods</p> <p>We used tibialis cranialis (TC) muscles and diaphragms of normal dogs and those with CXMD<sub>J </sub>at various ages from 1 month to 3 years old. For classification of fiber types, muscle sections were immunostained with antibodies against fast, slow, or developmental myosin heavy chain (MHC), and the number and size of these fibers were analyzed. In addition, MHC isoforms were detected by gel electrophoresis.</p> <p>Results</p> <p>In comparison with TC muscles of CXMD<sub>J</sub>, the number of fibers expressing slow MHC increased markedly and the number of fibers expressing fast MHC decreased with growth in the affected diaphragm. In populations of muscle fibers expressing fast and/or slow MHC(s) but not developmental MHC of CXMD<sub>J </sub>muscles, slow MHC fibers were predominant in number and showed selective enlargement. Especially, in CXMD<sub>J </sub>diaphragms, the proportions of slow MHC fibers were significantly larger in populations of myofibers with non-expression of developmental MHC. Analyses of MHC isoforms also indicated a marked increase of type I and decrease of type IIA isoforms in the affected diaphragm at ages over 6 months. In addition, expression of developmental (embryonic and/or neonatal) MHC decreased in the CXMD<sub>J </sub>diaphragm in adults, in contrast to continuous high-level expression in affected TC muscle.</p> <p>Conclusion</p> <p>The CXMD<sub>J </sub>diaphragm showed marked changes in fiber type composition unlike TC muscles, suggesting that the affected diaphragm may be effectively adapted toward dystrophic stress by switching to predominantly slow fibers. Furthermore, the MHC expression profile in the CXMD<sub>J </sub>diaphragm was markedly different from that in <it>mdx </it>mice, indicating that the dystrophic dog is a more appropriate model than a murine one, to investigate the mechanisms of respiratory failure in DMD.</p

    The Dark Side of EGFP: Defective Polyubiquitination

    Get PDF
    Enhanced Green Fluorescent Protein (EGFP) is the most commonly used live cell reporter despite a number of conflicting reports that it can affect cell physiology. Thus far, the precise mechanism of GFP-associated defects remained unclear. Here we demonstrate that EGFP and EGFP fusion proteins inhibit polyubiquitination, a posttranslational modification that controls a wide variety of cellular processes, like activation of kinase signalling or protein degradation by the proteasome. As a consequence, the NF-κB and JNK signalling pathways are less responsive to activation, and the stability of the p53 tumour suppressor is enhanced in cell lines and in vivo. In view of the emerging role of polyubiquitination in the regulation of numerous cellular processes, the use of EGFP as a live cell reporter should be carefully considered

    Ebf factors and MyoD cooperate to regulate muscle relaxation via Atp2a1

    Get PDF
    Jin, Saihong et al.Myogenic regulatory factors such as MyoD and Myf5 lie at the core of vertebrate muscle differentiation. However, E-boxes, the cognate binding sites for these transcription factors, are not restricted to the promoters/enhancers of muscle cell-specific genes. Thus, the specificity in myogenic transcription is poorly defined. Here we describe the transcription factor Ebf3 as a new determinant of muscle cell-specific transcription. In the absence of Ebf3 the lung does not unfold at birth, resulting in respiratory failure and perinatal death. This is due to a hypercontractile diaphragm with impaired Ca2+ efflux-related muscle functions. Expression of the Ca2+ pump Serca1 (Atp2a1) is downregulated in the absence of Ebf3, and its transgenic expression rescues this phenotype. Ebf3 binds directly to the promoter of Atp2a1 and synergises with MyoD in the induction of Atp2a1. In skeletal muscle, the homologous family member Ebf1 is strongly expressed and together with MyoD induces Atp2a1. Thus, Ebf3 is a new regulator of terminal muscle differentiation in the diaphragm, and Ebf factors cooperate with MyoD in the induction of muscle-specific genes. © 2014 Macmillan Publishers Limited.This work was supported by grants from the German Research Foundation (DFG, TRR54; FOR1586; FOR2033) and by a stipend of the Max Planck SocietyPeer Reviewe
    corecore