49 research outputs found

    Viral DNA Accumulation Regulates Replication Efficiency of \u3ci\u3eChlorovirus\u3c/i\u3e OSy-NE5 in Two Closely Related \u3ci\u3eChlorella variabilis\u3c/i\u3e Strains

    Get PDF
    Many chloroviruses replicate in Chlorella variabilis algal strains that are ex-endosymbionts isolated from the protozoan Paramecium bursaria, including the NC64A and Syngen 2-3 strains. We noticed that indigenous water samples produced a higher number of plaque-forming viruses on C. variabilis Syngen 2-3 lawns than on C. variabilis NC64A lawns. These observed differences led to the discovery of viruses that replicate exclusively in Syngen 2-3 cells, named Only Syngen (OSy) viruses. Here, we demonstrate that OSy viruses initiate infection in the restricted host NC64A by synthesizing some early virus gene products and that approximately 20% of the cells produce a small number of empty virus capsids. However, the infected cells did not produce infectious viruses because the cells were unable to replicate the viral genome. This is interesting because all previous attempts to isolate host cells resistant to chlorovirus infection were due to changes in the host receptor for the virus

    Reclassification of Subspecies of \u3ci\u3eAcidovorax avenae\u3c/i\u3e as \u3ci\u3eA. Avenae\u3c/i\u3e (Manns 1905) emend., \u3ci\u3eA. cattleyae \u3c/i\u3e (Pavarino, 1911)comb.nov., \u3ci\u3eA. citrulli\u3c/i\u3e Schaad et al.,1978)comb.nov., and proposal of \u3ci\u3eA. oryzae \u3c/i\u3esp. nov.

    Get PDF
    The bacterium Acidovorax avenae causes disease in a wide range of economically important monocotyledonous and dicotyledonous plants, including corn, rice, watermelon, anthurium, and orchids.Genotypic and phenotypic relatedness among strains of phytopathogenic A. avenae sub sp. avenae, A. avenae sub sp. citrulli, A. avenae subsp. cattleyae and A. konjaci, as well as all other Acidovorax species, including A. facilis, the type strain of Acidovorax, was determined.The16s rDNA sequencing confirmed previous studies showing the environmental species to be very distant from the phytopathogenic species. DNA/DNA reassociation assays on the different strains of A. avenae revealed four(A, B, C, and D) distinct genotypes. Taxon A included six A. avenae subsp. avenaestrains from corn that had a mean reciprocal similarity of 81%; taxon B included six A. avenae sub sp. avenae strains from rice that had a mean reciprocal similarity of 97%; taxon C contained 11 A. avenae sub sp. citrulli strains from cucurbits (cantaloupe, watermelon, and pumpkin) that had a mean reciprocal similarity of 88%, and taxon D contained four A. avenae sub sp. cattleyae strains from orchids that had a mean similarity of 98%

    Genetic Diversity of Potassium Ion Channel Proteins Encoded by Chloroviruses That Infect Chlorella heliozoae

    Get PDF
    Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of 82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain K+ channel proteins; it consists of two transmembrane -helixes with a pore region in the middle, making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner transmembrane domains of the protein were the most variable. Two of the new predicted channels were shown to be functional K+ channels

    Identification of a Chlorovirus PBCV-1 Protein Involved in Degrading the Host Cell Wall during Virus Infection

    Get PDF
    Chloroviruses are unusual among viruses infecting eukaryotic organisms in that they must, like bacteriophages, penetrate a rigid cell wall to initiate infection. Chlorovirus PBCV-1 infects its host, Chlorella variabilis NC64A by specifically binding to and degrading the cell wall of the host at the point of contact by a virus-packaged enzyme(s). However, PBCV-1 does not use any of the five previously characterized virus-encoded polysaccharide degrading enzymes to digest the Chlorella host cell wall during virus entry because none of the enzymes are packaged in the virion. A search for another PBCV-1-encoded and virion-associated protein identified protein A561L. The fourth domain of A561L is a 242 amino acid C-terminal domain, named A561LD4, with cell wall degrading activity. An A561LD4 homolog was present in all 52 genomically sequenced chloroviruses, infecting four different algal hosts. A561LD4 degraded the cell walls of all four chlorovirus hosts, as well as several non-host Chlorella spp. Thus, A561LD4 was not cell-type specific. Finally, we discovered that exposure of highly purified PBCV-1 virions to A561LD4 increased the specific infectivity of PBCV-1 from about 25–30% of the particles forming plaques to almost 50%. We attribute this increase to removal of residual host receptor that attached to newly replicated viruses in the cell lysates

    Near-atomic, non-icosahedrally averaged structure of giant virus Paramecium bursaria chlorella virus 1

    Get PDF
    Giant viruses are a large group of viruses that infect many eukaryotes. Although components that do not obey the overall icosahedral symmetry of their capsids have been observed and found to play critical roles in the viral life cycles, identities and high-resolution structures of these components remain unknown. Here, by determining a near-atomic-resolution, five-fold averaged structure of Parameciumbursaria chlorella virus 1, we unexpectedly found the viral capsid possesses up to five major capsid protein variants and a penton protein variant. These variants create varied capsidmicroenvironments for the associations of fibers, a vesicle, and previously unresolved minor capsid proteins. Our structure reveals the identities and atomic models of the capsid components that do not obey the overall icosahedral symmetry and leads to a model for how these components are assembled and initiate capsid assembly, and this model might be applicable to many other giant viruses

    The impact of lifestyle factors on age-related differences in hair trace element content in pregnant women in the third trimester

    Get PDF
    BACKGROUND: Trace elements play a significant role in the regulation of human reproduction, while advanced age may have a significant impact on trace element metabolism. The objective of the present study was to assess the impact of lifestyle factors on age-related differences in hair trace element content in pregnant women in the third trimester. METHODS: A total of 124 pregnant women aged 20–29 (n = 72) and 30–39 (n = 52) were ex- amined. Scalp hair trace element content was assessed using inductively coupled plasma mass spectrometry at NexION 300D (Perkin Elmer, USA) after microwave digestion. RESULTS: The results showed that the elder pregnant women had 36% (p = 0.009), 14% (p = 0.045), and 45% (p = 0.044) lower hair Zn, V, and Cd content, and 16% (p = 0.044) higher hair B levels – in comparison to the respective younger group values. Multiple regression analysis demonstrated that the age of the women had a significant influence on hair V and Zn levels. B content was also significantly influenced by age at first intercourse, smoking status, and specific dietary habits. None of the lifestyle factors were associated with hair Cd content in pregnant women. Hair V levels were also affected by following a special diet. Interestingly, alcohol intake did not have a significant impact on hair trace element content. CONCLUSIONS: These data indicate that lifestyle factors have a significant influence on age-related changes in hair trace elements during pregnancy that may impact the outcome of pregnancy

    The \u3ci\u3eChlorella variabilis\u3c/i\u3e NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    Get PDF
    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes

    Identification of a Chlorovirus PBCV-1 Protein Involved in Degrading the Host Cell Wall during Virus Infection

    No full text
    Chloroviruses are unusual among viruses infecting eukaryotic organisms in that they must, like bacteriophages, penetrate a rigid cell wall to initiate infection. Chlorovirus PBCV-1 infects its host, Chlorella variabilis NC64A by specifically binding to and degrading the cell wall of the host at the point of contact by a virus-packaged enzyme(s). However, PBCV-1 does not use any of the five previously characterized virus-encoded polysaccharide degrading enzymes to digest the Chlorella host cell wall during virus entry because none of the enzymes are packaged in the virion. A search for another PBCV-1-encoded and virion-associated protein identified protein A561L. The fourth domain of A561L is a 242 amino acid C-terminal domain, named A561LD4, with cell wall degrading activity. An A561LD4 homolog was present in all 52 genomically sequenced chloroviruses, infecting four different algal hosts. A561LD4 degraded the cell walls of all four chlorovirus hosts, as well as several non-host Chlorella spp. Thus, A561LD4 was not cell-type specific. Finally, we discovered that exposure of highly purified PBCV-1 virions to A561LD4 increased the specific infectivity of PBCV-1 from about 25–30% of the particles forming plaques to almost 50%. We attribute this increase to removal of residual host receptor that attached to newly replicated viruses in the cell lysates

    Chloroviruses

    Get PDF
    Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation

    Virion-Associated Restriction Endonucleases of Chloroviruses

    Get PDF
    Chloroviruses are large, double-stranded-DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae. The prototype of the genus is Paramecium bursaria chlorella virus 1 (PBCV-1). Chlorovirus genomes contain various amounts of methylated nucleotides due to virus-encoded DNA methyltransferases (MTases); about 25% of the MTases are associated with companion DNA site-specific (restriction) endonucleases (REases). These enzymes constitute virally encoded restriction-modification (R/M) systems. Although several of the chlorovirus R/M systems are characterized, their biological functions are unknown. The PBCV-1 proteome reveals that two virus-encoded REases, but not their companion MTases, are virion associated, suggesting that viral REases might help degrade the host DNA early in infection. To test this hypothesis, host chromosomal DNA from PBCV-1-infected cells was examined by pulsed-field gel electrophoresis. Initiation of host chromosomal DNA degradation occurred within 5 min postinfection (p.i.). The DNA degradation was insensitive to protein synthesis inhibitors or UV inactivation of virus particles, consistent with the agent being a small protein associated with the virion. Nuclease activities, including those of the two predicted REases and an uncharacterized general nuclease(s), were detected in disrupted PBCV-1 particles. The general nuclease(s) degraded both host and viral DNAs in vitro, although the viral DNA was not degraded in vivo, suggesting differential intracellular trafficking of the virion-associated nucleases. Infection with chloroviruses lacking an R/M system(s) resulted in either delayed host chromosomal DNA degradation or no detectable host chromatin changes. These immediate-early events associated with chlorovirus infections may facilitate rapid switching of the host transcriptional apparatus to viral transcription, which begins within 5 to 10 min p.i
    corecore