255 research outputs found

    Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Get PDF
    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed

    Feasibility of remotely manipulated welding in space: A step in the development of novel joining technologies

    Get PDF
    A six month research program entitled Feasibility of Remotely Manipulated Welding in Space - A Step in the Development of Novel Joining Technologies is performed at the Massachusetts Institute of Technology for the Office of Space Science and Applications, NASA, under Contract No. NASW-3740. The work is performed as a part of the Innovative Utilization of the Space Station Program. The final report from M.I.T. was issued in September 1983. This paper presents a summary of the work performed under this contract. The objective of this research program is to initiate research for the development of packaged, remotely controlled welding systems for space construction and repair. The research effort includes the following tasks: (1) identification of probable joining tasks in space; (2) identification of required levels of automation in space welding tasks; (3) development of novel space welding concepts; (4) development of recommended future studies; and (5) preparation of the final report

    Feasibility of remotely manipulated welding in space. A step in the development of novel joining technologies

    Get PDF
    In order to establish permanent human presence in space technologies of constructing and repairing space stations and other space structures must be developed. Most construction jobs are performed on earth and the fabricated modules will then be delivered to space by the Space Shuttle. Only limited final assembly jobs, which are primarily mechanical fastening, will be performed on site in space. Such fabrication plans, however, limit the designs of these structures, because each module must fit inside the transport vehicle and must withstand launching stresses which are considerably high. Large-scale utilization of space necessitates more extensive construction work on site. Furthermore, continuous operations of space stations and other structures require maintenance and repairs of structural components as well as of tools and equipment on these space structures. Metal joining technologies, and especially high-quality welding, in space need developing

    A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FeFe-hydrogenases are the most active class of H<sub>2</sub>-producing enzymes known in nature and may have important applications in clean H<sub>2 </sub>energy production. Many potential uses are currently complicated by a crucial weakness: the active sites of all known FeFe-hydrogenases are irreversibly inactivated by O<sub>2</sub>.</p> <p>Results</p> <p>We have developed a synthetic metabolic pathway in <it>E. coli </it>that links FeFe-hydrogenase activity to the production of the essential amino acid cysteine. Our design includes a complementary host strain whose endogenous redox pool is insulated from the synthetic metabolic pathway. Host viability on a selective medium requires hydrogenase expression, and moderate O<sub>2 </sub>levels eliminate growth. This pathway forms the basis for a genetic selection for O<sub>2 </sub>tolerance. Genetically selected hydrogenases did not show improved stability in O<sub>2 </sub>and in many cases had lost H<sub>2 </sub>production activity. The isolated mutations cluster significantly on charged surface residues, suggesting the evolution of binding surfaces that may accelerate hydrogenase electron transfer.</p> <p>Conclusions</p> <p>Rational design can optimize a fully heterologous three-component pathway to provide an essential metabolic flux while remaining insulated from the endogenous redox pool. We have developed a number of convenient <it>in vivo </it>assays to aid in the engineering of synthetic H<sub>2 </sub>metabolism. Our results also indicate a H<sub>2</sub>-independent redox activity in three different FeFe-hydrogenases, with implications for the future directed evolution of H<sub>2</sub>-activating catalysts.</p

    Insulation of a synthetic hydrogen metabolism circuit in bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits <it>in vivo </it>has not been pursued.</p> <p>Results</p> <p>Here we show that a synthetic hydrogen-producing electron transfer circuit in <it>Escherichia coli </it>can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR), allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds.</p> <p>Conclusions</p> <p>Through the construction and characterization of a synthetic metabolic circuit <it>in vivo</it>, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron transfer between proteins is controlled.</p

    Assembly of BioBrick standard biological parts using three antibiotic assembly

    Get PDF
    This is a revised personal version of the text of the final journal article available via DOI: 10.1016/B978-0-12-385120-8.00013-9An underlying goal of synthetic biology is to make the process of engineering biological systems easier and more reliable. In support of this goal, we developed BioBrick assembly standard 10 to enable the construction of systems from standardized genetic parts. The BioBrick standard underpins the distributed efforts by the synthetic biology research community to develop a collection of more than 6000 standard genetic parts available from the Registry of Standard Biological Parts. Here, we describe the three antibiotic assembly method for physical composition of BioBrick parts and provide step-by-step protocols. The method relies on a combination of positive and negative selection to eliminate time- and labor-intensive steps such as column cleanup and agarose gel purification of DNA during part assembly

    Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis

    Get PDF
    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low

    A synthetic circuit for selectively arresting daughter cells to create aging populations

    Get PDF
    The ability to engineer genetic programs governing cell fate will permit new safeguards for engineered organisms and will further the biological understanding of differentiation and aging. Here, we have designed, built and implemented a genetic device in the budding yeast Saccharomyces cerevisiae that controls cell-cycle progression selectively in daughter cells. The synthetic device was built in a modular fashion by combining timing elements that are coupled to the cell cycle, i.e. cell-cycle specific promoters and protein degradation domains, and an enzymatic domain which conditionally confers cell arrest. Thus, in the presence of a drug, the device is designed to arrest growth of only newly-divided daughter cells in the population. Indeed, while the engineered cells grow normally in the absence of drug, with the drug the engineered cells display reduced, linear growth on the population level. Fluorescence microscopy of single cells shows that the device induces cell arrest exclusively in daughter cells and radically shifts the age distribution of the resulting population towards older cells. This device, termed the ‘daughter arrester’, provides a blueprint for more advanced devices that mimic developmental processes by having control over cell growth and death
    corecore