111 research outputs found

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Smad7 induces hepatic metastasis in colorectal cancer

    Get PDF
    Although Smad signalling is known to play a tumour suppressor role, it has been shown to play a prometastatic function also in breast cancer and melanoma metastasis to bone. In contrast, mutation or reduced level of Smad4 in colorectal cancer is directly correlated to poor survival and increased metastasis. However, the functional role of Smad signalling in metastasis of colorectal cancer has not been elucidated. We previously reported that overexpression of Smad7 in colon adenocarcinoma (FET) cells induces tumorigenicity by blocking TGF-β-induced growth inhibition and apoptosis. Here, we have observed that abrogation of Smad signalling by Smad7 induces liver metastasis in a splenic injection model. Polymerase chain reaction with genomic DNA from liver metastases indicates that cells expressing Smad7 migrated to the liver. Increased expression of TGF-β type II receptor in liver metastases is associated with phosphorylation and nuclear accumulation of Smad2. Immunohistochemical analyses have suggested poorly differentiated spindle cell morphology and higher cell proliferation in Smad7-induced liver metastases. Interestingly, we have observed increased expression and junctional staining of Claudin-1, Claudin-4 and E-cadherin in liver metastases. Therefore, this report demonstrates, for the first time, that blockade of TGF-β/Smad pathway in colon cancer cells induces metastasis, thus supporting an important role of Smad signalling in inhibiting colon cancer metastasis

    BRCA1 Regulates Follistatin Function in Ovarian Cancer and Human Ovarian Surface Epithelial Cells

    Get PDF
    Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells

    Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro

    Get PDF
    INTRODUCTION: Transforming growth factor (TGF)-β1 is proposed to inhibit the growth of epithelial cells in early tumorigenesis, and to promote tumor cell motility and invasion in the later stages of carcinogenesis through the induction of an epithelial to mesenchymal transition (EMT). EMT is a multistep process that is characterized by changes in cell morphology and dissociation of cell–cell contacts. Although there is growing interest in TGF-β1-mediated EMT, the phenotype is limited to only a few murine cell lines and mouse models. METHODS: To identify alternative cell systems in which to study TGF-β1-induced EMT, 18 human and mouse established cell lines and cultures of two human primary epithelial cell types were screened for TGF-β1-induced EMT by analysis of cell morphology, and localization of zonula occludens-1, E-cadherin, and F-actin. Sensitivity to TGF-β1 was also determined by [(3)H]thymidine incorporation, flow cytometry, phosphorylation of Smad2, and total levels of Smad2 and Smad3 in these cell lines and in six additional cancer cell lines. RESULTS: TGF-β1 inhibited the growth of most nontransformed cells screened, but many of the cancer cell lines were insensitive to the growth inhibitory effects of TGF-β1. In contrast, TGF-β1 induced Smad2 phosphorylation in the majority of cell lines, including cell lines resistant to TGF-β1-mediated cell cycle arrest. Of the cell lines screened only two underwent TGF-β1-induced EMT. CONCLUSION: The results presented herein show that, although many cancer cell lines have lost sensitivity to the growth inhibitory effect of TGF-β1, most show evidence of TGF-β1 signal transduction, but only a few cell lines undergo TGF-β1-mediated EMT

    Autocrine PDGF stimulation in malignancies

    Get PDF
    Platelet-derived growth factor (PDGF) isoforms are important mitogens for different types of mesenchymal cells, which have important functions during the embryonal development and in the adult during wound healing and tissue homeostasis. In tumors, PDGF isoforms are often over-expressed and contribute to the growth of both normal and malignant cells. This review focuses on tumors expressing PDGF isoforms together with their tyrosine kinase receptors, thus resulting in autocrine stimulation of growth and survival. Patients with such tumors could benefit from treatment with inhibitors of either PDGF or PDGF receptors

    Optimal Islands Determination In Power System Restoration

    No full text

    Environmental

    No full text
    Comparing generation cost of DG and thermal power plants by considering their generation impacts on healt

    Short-Term Load Forecasting Using Neural Network and Particle Swarm Optimization (PSO) Algorithm

    No full text
    Electrical load forecasting plays a key role in power system planning and operation procedures. So far, a variety of techniques have been employed for electrical load forecasting. Meanwhile, neural-network-based methods led to fewer prediction errors due to their ability to adapt properly to the consuming load's hidden characteristic. Therefore, these methods were widely accepted by the researchers. As the parameters of the neural network have a significant impact on its performance, in this paper, a short-term electrical load forecasting method using neural network and particle swarm optimization (PSO) algorithm is proposed, in which some neural network parameters including learning rate and number of hidden layers are determined in order to forecast electrical load using the PSO algorithm precisely. Then, the neural network with these optimized parameters is used to predict the short-term electrical load. In this method, a three-layer feedforward neural network trained by backpropagation algorithm is used beside an improved gbest PSO algorithm. Also, the neural network prediction error is defined as the PSO algorithm cost function. The proposed approach has been tested on the Iranian power grid using MATLAB software. The average of three indices beside graphical results has been considered to evaluate the performance of the proposed method. The simulation results reflect the capabilities of the proposed method in accurately predicting the electrical load
    corecore