1,557 research outputs found
GEO 600 and the GEO-HF upgrade program: successes and challenges
The German-British laser-interferometric gravitational wave detector GEO 600
is in its 14th year of operation since its first lock in 2001. After GEO 600
participated in science runs with other first-generation detectors, a program
known as GEO-HF began in 2009. The goal was to improve the detector sensitivity
at high frequencies, around 1 kHz and above, with technologically advanced yet
minimally invasive upgrades. Simultaneously, the detector would record science
quality data in between commissioning activities. As of early 2014, all of the
planned upgrades have been carried out and sensitivity improvements of up to a
factor of four at the high-frequency end of the observation band have been
achieved. Besides science data collection, an experimental program is ongoing
with the goal to further improve the sensitivity and evaluate future detector
technologies. We summarize the results of the GEO-HF program to date and
discuss its successes and challenges
Cost-benefit analysis for commissioning decisions in GEO600
Gravitational wave interferometers are complex instruments, requiring years
of commissioning to achieve the required sensitivities for the detection of
gravitational waves, of order 10^-21 in dimensionless detector strain, in the
tens of Hz to several kHz frequency band. Investigations carried out by the
GEO600 detector characterisation group have shown that detector
characterisation techniques are useful when planning for commissioning work. At
the time of writing, GEO600 is the only large scale laser interferometer
currently in operation running with a high duty factor, 70%, limited chiefly by
the time spent commissioning the detector. The number of observable
gravitational wave sources scales as the product of the volume of space to
which the detector is sensitive and the observation time, so the goal of
commissioning is to improve the detector sensitivity with the least possible
detector down time. We demonstrate a method for increasing the number of
sources observable by such a detector, by assessing the severity of
non-astrophysical noise contaminations to efficiently guide commissioning. This
method will be particularly useful in the early stages and during the initial
science runs of the aLIGO and adVirgo detectors, as they are brought up to
design performance.Comment: 17 pages, 17 figures, 2 table
Control and automatic alignment of the output mode cleaner of GEO 600
The implementation of a mode cleaner at the output port of the GEO 600 gravitational wave detector will be part of the upcoming transition from GEO 600 to GEO-HF. Part of the transition will be the move from a heterodyne readout to a DC readout scheme. DC readout performance will be limited by higher order optical modes and control sidebands present at the output port. For optimum performance of DC readout an output mode cleaner (OMC) will clean the output beam of these contributions. Inclusion of an OMC will introduce new noise sources whose magnitudes needed to be estimated and for which new control systems will be needed. In this article we set requirements on the performance of these control systems and investigate the simulated performance of different designs.Science and Technology Facilities Council (STFC)BMBFMax Planck Society (MPG)State of Lower Saxony in GermanyEuropean Gravitational Observatory (EGO)DFG/SFB/Transregio
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run
The upgrade of GEO600
The German / British gravitational wave detector GEO 600 is in the process of
being upgraded. The upgrading process of GEO 600, called GEO-HF, will
concentrate on the improvement of the sensitivity for high frequency signals
and the demonstration of advanced technologies. In the years 2009 to 2011 the
detector will undergo a series of upgrade steps, which are described in this
paper.Comment: 9 pages, Amaldi 8 conference contributio
The Classical Harmonic Vibrations of the Atomic Centers of Mass with Micro Amplitudes and Low Frequencies Monitored by the Entanglement between the Two Two-level Atoms in a Single mode Cavity
We study the entanglement dynamics of the two two-level atoms coupling with a
single-mode polarized cavity field after incorporating the atomic centers of
mass classical harmonic vibrations with micro amplitudes and low frequencies.
We propose a quantitative vibrant factor to modify the concurrence of the two
atoms states. When the vibrant frequencies are very low, we obtain that: (i)
the factor depends on the relative vibrant displacements and the initial phases
rather than the absolute amplitudes, and reduces the concurrence to three
orders of magnitude; (ii) the concurrence increases with the increase of the
initial phases; (iii) the frequency of the harmonic vibration can be obtained
by measuring the maximal value of the concurrence during a small time. These
results indicate that even the extremely weak classical harmonic vibrations can
be monitored by the entanglement of quantum states.Comment: 10 pages, 3 figure
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of ∼10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
Recommended from our members
Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2
- …
