40 research outputs found

    PI 3 Kinase Related Kinases-Independent Proteolysis of BRCA1 Regulates Rad51 Recruitment during Genotoxic Stress in Human Cells

    Get PDF
    The function of BRCA1 in response to ionizing radiation, which directly generates DNA double strand breaks, has been extensively characterized. However previous investigations have produced conflicting data on mutagens that initially induce other classes of DNA adducts. Because of the fundamental and clinical importance of understanding BRCA1 function, we sought to rigorously evaluate the role of this tumor suppressor in response to diverse forms of genotoxic stress.We investigated BRCA1 stability and localization in various human cells treated with model mutagens that trigger different DNA damage signaling pathways. We established that, unlike ionizing radiation, either UVC or methylmethanesulfonate (MMS) (generating bulky DNA adducts or alkylated bases respectively) induces a transient downregulation of BRCA1 protein which is neither prevented nor enhanced by inhibition of PIKKs. Moreover, we found that the proteasome mediates early degradation of BRCA1, BARD1, BACH1, and Rad52 implying that critical components of the homologous recombination machinery need to be functionally abrogated as part of the early response to UV or MMS. Significantly, we found that inhibition of BRCA1/BARD1 downregulation is accompanied by the unscheduled recruitment of both proteins to chromatin along with Rad51. Consistently, treatment of cells with MMS engendered complete disassembly of Rad51 from pre-formed ionizing radiation-induced foci. Following the initial phase of BRCA1/BARD1 downregulation, we found that the recovery of these proteins in foci coincides with the formation of RPA and Rad51 foci. This indicates that homologous recombination is reactivated at later stage of the cellular response to MMS, most likely to repair DSBs generated by replication blocks.Taken together our results demonstrate that (i) the stabilities of BRCA1/BARD1 complexes are regulated in a mutagen-specific manner, and (ii) indicate the existence of mechanisms that may be required to prevent the simultaneous recruitment of conflicting signaling pathways to sites of DNA damage

    YY1 Regulates Melanocyte Development and Function by Cooperating with MITF

    Get PDF
    Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP–seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)—a general mechanism which may confer tissue-specific gene expression in multiple lineages

    The Transcription Factor YY1 Is a Substrate for Polo-Like Kinase 1 at the G2/M Transition of the Cell Cycle

    Get PDF
    Yin-Yang 1 (YY1) is an essential multifunctional zinc-finger protein. It has been shown over the past two decades to be a critical regulator of a vast array of biological processes, including development, cell proliferation and differentiation, DNA repair, and apoptosis. YY1 exerts its functions primarily as a transcription factor that can activate or repress gene expression, dependent on its spatial and temporal context. YY1 regulates a large number of genes involved in cell cycle transitions, many of which are oncogenes and tumor-suppressor genes. YY1 itself has been classified as an oncogene and was found to be upregulated in many cancer types. Unfortunately, our knowledge of what regulates YY1 is very minimal. Although YY1 has been shown to be a phosphoprotein, no kinase has ever been identified for the phosphorylation of YY1. Polo-like kinase 1 (Plk1) has emerged in the past few years as a major cell cycle regulator, particularly for cell division. Plk1 has been shown to play important roles in the G/M transition into mitosis and for the proper execution of cytokinesis, processes that YY1 has been shown to regulate also. Here, we present evidence that Plk1 directly phosphorylates YY1 in vitro and in vivo at threonine 39 in the activation domain. We show that this phosphorylation is cell cycle regulated and peaks at G2/M. This is the first report identifying a kinase for which YY1 is a substrate

    Myocardial ischemic preconditioning in rodents is dependent on poly (ADP-ribose) synthetase

    No full text
    BACKGROUND: Activation of the nuclear enzyme poly (ADP-ribose) synthetase (PARS) in response to oxidant-mediated DNA injury has been shown to play an important role in the pathogenesis of reperfusion injury. Here we investigated the role of PARS in myocardial ischemic preconditioning (IPC). MATERIALS AND METHODS: Mice with or without genetic disruption of PARS and rats in the absence or presence of the PARS inhibitor 3-aminobenzamide underwent coronary occlusion and reperfusion with or without IPC. RESULTS: Both poly(ADP-ribose) synthetase (PARS) deficiency and ischemic preconditioning (IPC) induced protection from reperfusion injury, attenuated inflammatory mediator production, and reduced neutrophil infiltration when compared to the response in wild-type mice. Surprisingly, the protective effect of IPC not only disappeared in PARS-/- mice, but the degree of myocardial injury and inflammatory response was similar to the one seen in wild-type animals. Similarly, in the rat model of IPC, 3-aminobenzamide pretreatment blocked the beneficial effect of IPC. Myocardial NAD+ levels were maintained in the PARS-deficient mice during reperfusion, while depleted in the wild-type mice. The protection against reperfusion injury by IPC was also associated with partially preserved myocardial NAD+ levels, indicating that PARS activation is attenuated by IPC. This conclusion was further strengthened by poly(ADP-ribose) immunohistochemical measurements, demonstrating that IPC markedly inhibits PARS activation during reperfusion. CONCLUSIONS: The mode of IPC's action is related, at least in part, to an inhibition of PARS. This process may occur either by self-auto-ribosylation of PARS during IPC, and/or via the release of endogenous purines during IPC that inhibit PARS activation during reperfusion

    A DNA vector-based RNAi technology to suppress gene expression in mammalian cells

    No full text
    Double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful reverse genetic tool to silence gene expression in multiple organisms including plants, Caenorhabditis elegans, and Drosophila. The discovery that synthetic double-stranded, 21-nt small interfering RNA triggers gene-specific silencing in mammalian cells has further expanded the utility of RNAi into mammalian systems. Here we report a technology that allows synthesis of small interfering RNAs from DNA templates in vivo to efficiently inhibit endogenous gene expression. Significantly, we were able to use this approach to demonstrate, in multiple cell lines, robust inhibition of several endogenous genes of diverse functions. These findings highlight the general utility of this DNA vector-based RNAi technology in suppressing gene expression in mammalian cells
    corecore