17 research outputs found

    Calculation and experimental study on high-speed impact of heat-resistant coating materials with a meteoric particle

    Get PDF
    The given article presents the conducted calculation and experimental study on destruction of heat-resistant coating material of an aircraft in the process of high-speed interaction of the steel spherical projectile. The projectile is imitating a meteoric particle. The study was conducted in the wide range of velocities. The mathematical behavioral model of heat-resistant coating under high-speed impact was developed. The interaction of ameteoric particle with an element of the protective structure has especially individual character and depends on impact velocity and angle, materials of the interacting solids

    Simulation of high-speed interaction between impactor and layered-spaced design involving explosive

    Get PDF
    In this paper we present calculating and experimental study of high-speed interaction between explosive content, protected by layered-spaced design, and the cermet impactor in wide speed range. An experimental technique and mathematical model of during the behavior of explosives, protected by layer-spaced design, by with high-speed impact. The process of the interaction between the cermet impactor and element of the protective design is customized and depends on the materials of the interacting bodies, the speed and angle of impact

    Intrusion features of a high-speed striker of a porous tungsten-based alloy with a strengthening filler in a steel barrier

    Get PDF
    The complex problem of increasing the penetrating power of strikers based on highly porous tungsten composites is considered by improving their strengthening properties by alloying the hardening components under high-speed collision conditions. Using the method of liquid-phase sintering, we fabricated samples of strikers based on a porous WNiFeCo alloy (tungsten + nickel + iron + cobalt), alloyed with tungsten carbide with cobalt (WCCo8) and titanium-tungsten carbide (TiWC). Dynamic tests of the strikers from the developed alloys were carried out at the collision velocity with a steel barrier of the order of 2800 m/s. The penetration depth of the striker based on a porous WNiFeCo alloy doped with tungsten carbides is 30% higher than the penetration depth of a striker of a monolithic WNiFe-90 alloy (tungsten + nickel + iron with a tungsten content of 90%)

    Experimental and theoretical research of the interaction between high-strength supercavitation impactors and monolithic barriers in water

    Get PDF
    The article describes experimental and theoretical research of the interaction between supercavitating impactors and underwater aluminum alloy and steel barriers. Strong alloys are used for making impactors. An experimental research technique based on a high-velocity hydro-ballistic complex was developed. Mathematical simulation of the collision the impactor and barrier is based on the continuum mechanics inclusive of the deformation and destruction of interacting bodies. Calculated and experimental data on the ultimate penetration thickness of barriers made of aluminum alloy D16T and steel for the developed supercavitating impactor are obtained

    High-speed impact of the metal projectile on the barrier containing porous corundum-based ceramics with chemically active filler

    Get PDF
    The paper presents a calculation-experimental study on high-speed interaction of the metal projectile with a combined barrier made of porous corundum-based ceramics filled with chemically active composition (sulfur, nitrate of potash) in the wide range of speeds. A mathematical behavior model of porous corundum-based ceramics with chemically active filler is developed within the scope of mechanics of continuous media taking into account the energy embedding from a possible chemical reaction between a projectile metal and filler at high-speed impact. Essential embedding of inlet heat is not observed in the considered range of impact speeds (2.5 … 8β€…km/s)

    Special features of high-speed interaction of supercavitating solids in water

    Get PDF
    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initial flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590β€…m/s was recorded

    Calculation and experimental study on high-speed impact of heat-resistant coating materials with a meteoric particle

    No full text
    The given article presents the conducted calculation and experimental study on destruction of heat-resistant coating material of an aircraft in the process of high-speed interaction of the steel spherical projectile. The projectile is imitating a meteoric particle. The study was conducted in the wide range of velocities. The mathematical behavioral model of heat-resistant coating under high-speed impact was developed. The interaction of ameteoric particle with an element of the protective structure has especially individual character and depends on impact velocity and angle, materials of the interacting solids

    Simulation of high-speed interaction between impactor and layered-spaced design involving explosive

    No full text
    In this paper we present calculating and experimental study of high-speed interaction between explosive content, protected by layered-spaced design, and the cermet impactor in wide speed range. An experimental technique and mathematical model of during the behavior of explosives, protected by layer-spaced design, by with high-speed impact. The process of the interaction between the cermet impactor and element of the protective design is customized and depends on the materials of the interacting bodies, the speed and angle of impact
    corecore