6,123 research outputs found
Modeling Concept Combinations in a Quantum-theoretic Framework
We present modeling for conceptual combinations which uses the mathematical
formalism of quantum theory. Our model faithfully describes a large amount of
experimental data collected by different scholars on concept conjunctions and
disjunctions. Furthermore, our approach sheds a new light on long standing
drawbacks connected with vagueness, or fuzziness, of concepts, and puts forward
a completely novel possible solution to the 'combination problem' in concept
theory. Additionally, we introduce an explanation for the occurrence of quantum
structures in the mechanisms and dynamics of concepts and, more generally, in
cognitive and decision processes, according to which human thought is a well
structured superposition of a 'logical thought' and a 'conceptual thought', and
the latter usually prevails over the former, at variance with some widespread
beliefsComment: 5 pages. arXiv admin note: substantial text overlap with
arXiv:1311.605
Quantum Structure in Cognition: Why and How Concepts are Entangled
One of us has recently elaborated a theory for modelling concepts that uses
the state context property (SCoP) formalism, i.e. a generalization of the
quantum formalism. This formalism incorporates context into the mathematical
structure used to represent a concept, and thereby models how context
influences the typicality of a single exemplar and the applicability of a
single property of a concept, which provides a solution of the 'Pet-Fish
problem' and other difficulties occurring in concept theory. Then, a quantum
model has been worked out which reproduces the membership weights of several
exemplars of concepts and their combinations. We show in this paper that a
further relevant effect appears in a natural way whenever two or more concepts
combine, namely, 'entanglement'. The presence of entanglement is explicitly
revealed by considering a specific example with two concepts, constructing some
Bell's inequalities for this example, testing them in a real experiment with
test subjects, and finally proving that Bell's inequalities are violated in
this case. We show that the intrinsic and unavoidable character of entanglement
can be explained in terms of the weights of the exemplars of the combined
concept with respect to the weights of the exemplars of the component concepts.Comment: 10 page
Quantum Structures: An Attempt to Explain the Origin of their Appearance in Nature
We explain the quantum structure as due to the presence of two effects, (a) a
real change of state of the entity under influence of the measurement and, (b)
a lack of knowledge about a deeper deterministic reality of the measurement
process. We present a quantum machine, where we can illustrate in a simple way
how the quantum structure arises as a consequence of the two mentioned effects.
We introduce a parameter epsilon that measures the size of the lack of
knowledge on the measurement process, and by varying this parameter, we
describe a continuous evolution from a quantum structure (maximal lack of
knowledge) to a classical structure (zero lack of knowledge). We show that for
intermediate values of epsilon we find a new type of structure, that is neither
quantum nor classical. We apply the model that we have introduced to situations
of lack of knowledge about the measurement process appearing in other regions
of reality. More specifically we investigate the quantum-like structures that
appear in the situation of psychological decision processes, where the subject
is influenced during the testing, and forms some of his opinions during the
testing process. Our conclusion is that in the light of this explanation, the
quantum probabilities are epistemic and not ontological, which means that
quantum mechanics is compatible with a determinism of the whole.Comment: 22 pages, 8 figure
Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aert's machine-models
From the beginning of his research, the Belgian physicist Diederik Aerts has
shown great creativity in inventing a number of concrete machine-models that
have played an important role in the development of general mathematical and
conceptual formalisms for the description of the physical reality. These models
can also be used to demystify much of the strangeness in the behavior of
quantum entities, by allowing to have a peek at what's going on - in structural
terms - behind the "quantum scenes," during a measurement. In this author's
view, the importance of these machine-models, and of the approaches they have
originated, have been so far seriously underappreciated by the physics
community, despite their success in clarifying many challenges of quantum
physics. To fill this gap, and encourage a greater number of researchers to
take cognizance of the important work of so-called Geneva-Brussels school, we
describe and analyze in this paper two of Aerts' historical machine-models,
whose operations are based on simple breakable elastic bands. The first one,
called the spin quantum-machine, is able to replicate the quantum probabilities
associated with the spin measurement of a spin-1/2 entity. The second one,
called the \emph{connected vessels of water model} (of which we shall present
here an alternative version based on elastics) is able to violate Bell's
inequality, as coincidence measurements on entangled states can do.Comment: 15 pages, 5 figure
The Guppy Effect as Interference
People use conjunctions and disjunctions of concepts in ways that violate the
rules of classical logic, such as the law of compositionality. Specifically,
they overextend conjunctions of concepts, a phenomenon referred to as the Guppy
Effect. We build on previous efforts to develop a quantum model that explains
the Guppy Effect in terms of interference. Using a well-studied data set with
16 exemplars that exhibit the Guppy Effect, we developed a 17-dimensional
complex Hilbert space H that models the data and demonstrates the relationship
between overextension and interference. We view the interference effect as, not
a logical fallacy on the conjunction, but a signal that out of the two
constituent concepts, a new concept has emerged.Comment: 10 page
Ephemeral properties and the illusion of microscopic particles
Founding our analysis on the Geneva-Brussels approach to quantum mechanics,
we use conventional macroscopic objects as guiding examples to clarify the
content of two important results of the beginning of twentieth century:
Einstein-Podolsky-Rosen's reality criterion and Heisenberg's uncertainty
principle. We then use them in combination to show that our widespread belief
in the existence of microscopic particles is only the result of a cognitive
illusion, as microscopic particles are not particles, but are instead the
ephemeral spatial and local manifestations of non-spatial and non-local
entities
An approximation algorithm for a generalized assignment problem with small resource requirements.
We investigate a generalized assignment problem where the resource requirements are either 1 or 2. This problem is motivated by a question that arises when data blocks are to be retrieved from parallel disks as efficiently as possible. The resulting problem is to assign jobs to machines with a given capacity, where each job takes either one or two units of machine capacity, and must satisfy certain assignment restrictions, such that total weight of the assigned jobs is maximized. We derive a 2/3-approximation result for this problem based on relaxing a formulation of the problem so that the resulting constraint matrix is totally unimodular. Further, we prove that the LP-relaxation of a special case of the problem is half-integral, and we derive a weak persistency property.Assignment; Constraint; Data; Matrix; Requirements;
How to play two-players restricted quantum games with 10 cards
We show that it is perfectly possible to play 'restricted' two-players,
two-strategies quantum games proposed originally by Marinatto and Weber having
as the only equipment a pack of 10 cards. The 'quantum board' of such a model
of these quantum games is an extreme simplification of 'macroscopic quantum
machines' proposed by one of the authors in numerous papers that allow to
simulate by macroscopic means various experiments performed on two entangled
quantum objectsComment: 4 pages, 3 figure
What is Quantum? Unifying Its Micro-Physical and Structural Appearance
We can recognize two modes in which 'quantum appears' in macro domains: (i) a
'micro-physical appearance', where quantum laws are assumed to be universal and
they are transferred from the micro to the macro level if suitable 'quantum
coherence' conditions (e.g., very low temperatures) are realized, (ii) a
'structural appearance', where no hypothesis is made on the validity of quantum
laws at a micro level, while genuine quantum aspects are detected at a
structural-modeling level. In this paper, we inquire into the connections
between the two appearances. We put forward the explanatory hypothesis that,
'the appearance of quantum in both cases' is due to 'the existence of a
specific form of organisation, which has the capacity to cope with random
perturbations that would destroy this organisation when not coped with'. We
analyse how 'organisation of matter', 'organisation of life', and 'organisation
of culture', play this role each in their specific domain of application, point
out the importance of evolution in this respect, and put forward how our
analysis sheds new light on 'what quantum is'.Comment: 10 page
Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory
We put forward a possible new interpretation and explanatory framework for
quantum theory. The basic hypothesis underlying this new framework is that
quantum particles are conceptual entities. More concretely, we propose that
quantum particles interact with ordinary matter, nuclei, atoms, molecules,
macroscopic material entities, measuring apparatuses, ..., in a similar way to
how human concepts interact with memory structures, human minds or artificial
memories. We analyze the most characteristic aspects of quantum theory, i.e.
entanglement and non-locality, interference and superposition, identity and
individuality in the light of this new interpretation, and we put forward a
specific explanation and understanding of these aspects. The basic hypothesis
of our framework gives rise in a natural way to a Heisenberg uncertainty
principle which introduces an understanding of the general situation of 'the
one and the many' in quantum physics. A specific view on macro and micro
different from the common one follows from the basic hypothesis and leads to an
analysis of Schrodinger's Cat paradox and the measurement problem different
from the existing ones. We reflect about the influence of this new quantum
interpretation and explanatory framework on the global nature and evolutionary
aspects of the world and human worldviews, and point out potential explanations
for specific situations, such as the generation problem in particle physics,
the confinement of quarks and the existence of dark matter.Comment: 45 pages, 10 figure
- …