5 research outputs found

    La terapia celular en la cardiopatía isquémica

    No full text
    La cardiopatía isquémica es la principal causa de muerte e insuficiencia cardiaca a nivel mundial. Esto hace de vital importancia el desarrollo de nuevas modalidades terapéuticas, que disminuyan la mortalidad y complicaciones a largo plazo en estos pacientes. Una de las principales líneas de investigación a nivel mundial es la regeneración miocárdica a partir de células progenitoras, con el fin de mejorar la función sistólica y diastólica de los pacientes con cardiopatía isquémica, además de incrementar su sobrevida. Con bases teóricas y fisiológicas sobre la función de estas células, se han llevado a cabo con gran entusiasmo a nivel mundial, estudios en animales y humanos para tratar de definir la utilidad del empleo de las células madre, en el manejo de los pacientes con cardiopatía isquémica. En la actualidad, la terapia regenerativa en la cardiopatía isquémica es considerada una herramienta terapéutica novedosa, de beneficios teóricos considerables y pocos efectos adversos. En esta revisión presentamos los fundamentos científicos básicos que apoyan el empleo de esta terapia, la evidencia clínica actual sobre su beneficio. Señalamos los puntos controversiales y las perspectivas sobre su empleo y utilidad a corto y largo plazo

    Quantitative Analysis of Innate Lymphoid Cells in Patients with ST-Segment Elevation Myocardial Infarction

    No full text
    Acute myocardial infarction (AMI) is one of the principal causes of death in Mexico and worldwide. AMI triggers an acute inflammatory process that induces the activation of different populations of the innate immune system. Innate lymphoid cells (ILCs) are an innate immunity, highly pleiotropic population, which have been observed to participate in tissue repair and polarization of the adaptive immune response. We aimed to analyze the levels of subsets of ILCs in patients with ST-segment elevation myocardial infarction (STEMI), immediately 3 and 6 months post-AMI, and analyze their correlation with clinical parameters. We evaluated 29 STEMI patients and 15 healthy controls and analyzed the different subsets of circulating ILCs, immediately 3 and 6 months post-AMI. We observed higher levels of circulating ILCs in STEMI patients compared to control subjects and a significant correlation between ILC levels and cardiac function. We also found increased production of the cytokines interleukin 5 (IL-5) and interleukin 17A (IL-17A), produced by ILC2 cells and by ILC3 cells, respectively, in the STEMI patients. This study shows new evidence of the role of ILCs in the pathophysiology of AMI and their possible involvement in the maintenance of cardiac function.</p

    Induction of Th17 Lymphocytes and Treg Cells by Monocyte-Derived Dendritic Cells in Patients with Rheumatoid Arthritis and Systemic Lupus Erythematosus

    Get PDF
    Dendritic cells (DCs) have a key role in the regulation of immune response. We herein explored, in patients with inflammatory diseases, the role of monocyte derived DC’s (mo-DCs) on the generation of Th17 and T regulatory (Treg) lymphocytes. Peripheral blood was obtained from thirty-five patients with rheumatoid arthritis (RA), twelve with systemic lupus erythematosus (SLE), and twenty healthy subjects. Mo-DCs were generated under standard (IL-4/GM-CSF) or tolerogenic (IL-4/GM-CSF plus recombinant P-selectin or PD-1 or IL-10) conditions, and their ability to induce Th17 and Treg lymphocytes was tested. We detected that mo-DCs from patients with RA showed an enhanced release of IL-6 and IL-23 as well as an increased capability to induce Th17 cells. Although mo-DCs from SLE patients also released high levels of IL-6/IL-23, it did not show an increased ability to induce Th17 lymphocytes. In addition, mo-DCs, from patients with RA and SLE generated under the engagement of PSGL-1, showed a defective capability to induce Foxp3+ Treg cells. A similar phenomenon was observed in SLE, when DC’s cells were generated under PDL-1 engagement. Our data indicate that DCs from patients with rheumatic inflammatory disease show an aberrant function that may have an important role in the pathogenesis of these conditions

    Analysis of the Expression and Function of Immunoglobulin-Like Transcript 4 (ILT4, LILRB2) in Dendritic Cells from Patients with Systemic Lupus Erythematosus

    No full text
    Dendritic cells (DC) play an important role in the development and maintenance of immune tolerance. Although the inhibitory receptor ILT4/LILRB2 has been related with the tolerogenic phenotype of DC, the possible role of this receptor in the breakdown of DC tolerogenic function in systemic lupus erythematosus (SLE) has not been elucidated. In this study, we analyzed the expression and function of the inhibitory receptor ILT4 in DC from SLE patients. We found that the percentage of ILT4 positive plasmacytoid DC and myeloid DC is significantly diminished in SLE patients. Interestingly, ligation of ILT4 did not affect the maturation or immunogenic capability of DC in healthy controls. In contrast, in SLE patients we observed an inhibitory effect of ILT4 on the immunogenic capability of DC. ILT4 was shown not to have a crucial role in regulating the maturation and function of DC from healthy controls but is partially involved in the maturation process and immunogenic capability of DC from SLE patients, suggesting that other inhibitory receptors, involved in the regulation of DC tolerogenic function, may be impaired in this autoimmune disease
    corecore