4 research outputs found

    Cod liver oil nano-structured lipid carriers (Cod-NLCs) as a promising platform for nose to brain delivery: Preparation, in vitro optimization, ex vivo cytotoxicity & in vivo biodistribution utilizing radioiodinated zopiclone

    No full text
    Nano-structured lipid carriers containing zopiclone were prepared as a targeted drug delivery system to convey zopiclone directly to brain via nasal route. Nano-structured lipid carriers were constructed adopting hot emulsification-ultrasonication method using palmitic acid in place of the solid lipid, cod liver oil as liquid lipid, and poloxamer 407 as a surfactant. A three-factor three-level central composite face-centered design was used to optimize the formulated nano-structured lipid carriers. The independent factors were lipid amount (X1), surfactant amount (X2), and sonication time (X3). The examined responses were entrapment efficiency (EE,Y1,%), particle size (PS,Y2,nm), zeta potential(mV), polydispersity index(PDI,Y3), in vitro release(Q8h,Y4,%) and dissolution efficiency (DE,Y5,%). The optimum formula showed high entrapment efficiency of 94.31% ± 2.44, in vitro drug release of 83.89% ± 1.77 with dissolution efficiency equals 88.63% ± 2.01, small particle size of 71.27 nm ± 13.57 and low polydispersity index 0.097 ± 0.15. In vivo biodistribution in mice was evaluated by a radiobiological technique using radioiodinated zopiclone([131I]iodo-ZP). Results revealed the superiority of the intranasal route to deliver zopiclone directly to brain faster and higher brain uptake (6.9 ± 1.02%ID/g at 5 min post-administration). The current study confirmed that intranasal administration of nano-structured lipid carriers had great potential as an effective tool for targeted brain zopiclone delivery for insomnia treatment

    Green synthesis of highly functionalized heterocyclic bearing pyrazole moiety for cancer-targeted chemo/radioisotope therapy

    No full text
    Abstract New derivatives of heterocyclic bearing pyrazole moiety were synthesized (eight new compounds from 2 to 9) via green synthesis methods (microwave-assisted and grinding techniques). 4,6-Diamino-1,3-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (2) shows high anti-cancer activity against both HepG2 and HCT-116 with IC50 of 9.2 ± 2.8 and 7.7 ± 1.8 µM, respectively, which referenced to 5-Fu which is showing activity of 7.86 ± 0.5 and 5.35 ± 0.3 against both HepG2 and HCT-116, respectively. The cytotoxic activity against HCT-116 and HepG2 was slightly decreased and slightly increased, respectively, by a different pyrazole moiety (compound 5). Pharmacokinetics of compound 2 was carried out using the radioiodination technique in tumour-bearing Albino mice which shows good uptake at the tumour site. The biodistribution showed high accumulation in tumour tissues with a ratio of 13.7% ID/g organ after one hour in comparison with 2.97% ID/g organ at normal muscle at the same time point. As I-131 has maximum beta and gamma energies of 606.3 and 364.5 keV, respectively, therefore the newly synthesized compound 2 may be used for chemotherapy and TRT

    Novel pyridine bearing pentose moiety-based anticancer agents: design, synthesis, radioiodination and bioassessments

    No full text
    Abstract Pyridine compounds are one of the most important heterocyclic derivatives showing wide ranges in biological and pharmacological activities. Green chemistry eliminates or reduces the generation of hazardous compounds. It prevents pollution at a molecular level. The microwave technique used in heterocyclic compound synthesis is also an important branch of green chemistry techniques. In this study, we report designing and synthesizing a new pyridine-bearing pentose moiety via a one-pot multicomponent reaction using D-glucose and also investigate its behavior and reactivity toward some simple and heterocyclic amino derivatives. The chemical structures of the synthesized compounds were characterized and tested for their cytotoxic activities. Some of the test compounds exhibited slight to high cytotoxic activities against Caco2 (colon cancer) cells, HepG2 (hepatocellular carcinoma) cells and MCF-7 (human breast cancer) cells by MTT assay. The results showed clearly that compound 4 and compound 8 displayed strongest to moderate cytotoxic activity against the HepG2, Caco2 and MCF-7 respectively and compound 1 showed good activity against MCF-7 in comparison to the standard anticancer drug doxorubicin. These data were by cytopathological examination. An in-vivo radioactive tracing study of compound 4 proved its targeting ability to sarcoma cells in a tumor-bearing mice model. Our findings suggest that the synthesized compounds may be promising candidates as novel anticancer agents
    corecore