166 research outputs found
Covariant Calculation of General Relativistic Effects in an Orbiting Gyroscope Experiment
We carry out a covariant calculation of the measurable relativistic effects
in an orbiting gyroscope experiment. The experiment, currently known as Gravity
Probe B, compares the spin directions of an array of spinning gyroscopes with
the optical axis of a telescope, all housed in a spacecraft that rolls about
the optical axis. The spacecraft is steered so that the telescope always points
toward a known guide star. We calculate the variation in the spin directions
relative to readout loops rigidly fixed in the spacecraft, and express the
variations in terms of quantities that can be measured, to sufficient accuracy,
using an Earth-centered coordinate system. The measurable effects include the
aberration of starlight, the geodetic precession caused by space curvature, the
frame-dragging effect caused by the rotation of the Earth and the deflection of
light by the Sun.Comment: 7 pages, 1 figure, to be submitted to Phys. Rev.
Pion production in deeply virtual Compton scattering
Using a soft pion theorem based on chiral symmetry and a
resonance model we propose an estimate for the production cross section of low
energy pions in the deeply virtual Compton scattering (DVCS) process. In
particular, we express the processes in terms of
generalized parton distributions. We provide estimates of the contamination of
the DVCS observables due to this associated pion
production processes when the experimental data are not fully exclusive, for a
set of kinematical conditions representative of present or planned experiments
at JLab, HERMES and COMPASS.Comment: 50 pages, 22 figure
Thermal analysis of production of resonances in relativistic heavy-ion collisions
Production of resonances is considered in the framework of the
single-freeze-out model of ultra-relativistic heavy ion collisions. The
formalism involves the virial expansion, where the probability to form a
resonance in a two-body channel is proportional to the derivative of the
phase-shift with respect to the invariant mass. The thermal model incorporates
longitudinal and transverse flow, as well as kinematic cuts of the STAR
experiment at RHIC. We find that the shape of the pi+ pi- spectral line
qualitatively reproduces the preliminary experimental data when the position of
the rho peak is lowered. This confirms the need to include the medium effects
in the description of the RHIC data. We also analyze the transverse-momentum
spectra of rho, K*(892), and f_0(980), and find that the slopes agree with the
observed values. Predictions are made for eta, eta', omega, phi, Lambda(1520),
and Sigma(1385).Comment: minor modifications, a reference adde
Anomalous Pseudoscalar-Photon Vertex In and Out of Equilibrium
The anomalous pseudoscalar-photon vertex is studied in real time in and out
of equilibrium in a constituent quark model. The goal is to understand the
in-medium modifications of this vertex, exploring the possibility of enhanced
isospin breaking by electromagnetic effects as well as the formation of neutral
pion condensates in a rapid chiral phase transition in peripheral,
ultrarelativistic heavy-ion collisions. In equilibrium the effective vertex is
afflicted by infrared and collinear singularities that require hard thermal
loop (HTL) and width corrections of the quark propagator. The resummed
effective equilibrium vertex vanishes near the chiral transition in the chiral
limit. In a strongly out of equilibrium chiral phase transition we find that
the chiral condensate drastically modifies the quark propagators and the
effective vertex. The ensuing dynamics for the neutral pion results in a
potential enhancement of isospin breaking and the formation of
condensates. While the anomaly equation and the axial Ward identity are not
modified by the medium in or out of equilibrium, the effective real-time
pseudoscalar-photon vertex is sensitive to low energy physics.Comment: Revised version to appear in Phys. Rev. D. 42 pages, 4 figures, uses
Revte
Phase structures of strong coupling lattice QCD with finite baryon and isospin density
Quantum chromodynamics (QCD) at finite temperature (T), baryon chemical
potential (\muB) and isospin chemical potential (\muI) is studied in the strong
coupling limit on a lattice with staggered fermions. With the use of large
dimensional expansion and the mean field approximation, we derive an effective
action written in terms of the chiral condensate and pion condensate as a
function of T, \muB and \muI. The phase structure in the space of T and \muB is
elucidated, and simple analytical formulas for the critical line of the chiral
phase transition and the tricritical point are derived. The effects of a finite
quark mass (m) and finite \muI on the phase diagram are discussed. We also
investigate the phase structure in the space of T, \muI and m, and clarify the
correspondence between color SU(3) QCD with finite isospin density and color
SU(2) QCD with finite baryon density. Comparisons of our results with those
from recent Monte Carlo lattice simulations on finite density QCD are given.Comment: 18 pages, 6 figures, revtex4; some discussions are clarified, version
to appear in Phys. Rev.
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
Entanglement, Bell Inequalities and Decoherence in Particle Physics
We demonstrate the relevance of entanglement, Bell inequalities and
decoherence in particle physics. In particular, we study in detail the features
of the ``strange'' system as an example of entangled
meson--antimeson systems. The analogies and differences to entangled spin--1/2
or photon systems are worked, the effects of a unitary time evolution of the
meson system is demonstrated explicitly. After an introduction we present
several types of Bell inequalities and show a remarkable connection to CP
violation. We investigate the stability of entangled quantum systems pursuing
the question how possible decoherence might arise due to the interaction of the
system with its ``environment''. The decoherence is strikingly connected to the
entanglement loss of common entanglement measures. Finally, some outlook of the
field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids,
42. Internationale Universit\"atswochen f\"ur Theoretische Physik,
Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in
Physics, Springer Verlag, 45 page
Precision tests with a new class of dedicated ether-drift experiments
In principle, by accepting the idea of a non-zero vacuum energy, the physical
vacuum of present particle physics might represent a preferred reference frame.
By treating this quantum vacuum as a relativistic medium, the non-zero
energy-momentum flow expected in a moving frame should effectively behave as a
small thermal gradient and could, in principle, induce a measurable anisotropy
of the speed of light in a loosely bound system as a gas. We explore the
phenomenological implications of this scenario by considering a new class of
dedicated ether-drift experiments where arbitrary gaseous media fill the
resonating optical cavities. Our predictions cover most experimental set up and
should motivate precise experimental tests of these fundamental issues.Comment: Accepted for publication in Eur. Phys. Journ.
Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions
We study the beam-energy and system-size dependence of \phi meson production
(using the hadronic decay mode \phi -- K+K-) by comparing the new results from
Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4
and 200 GeV measured in the STAR experiment at RHIC. Data presented are from
mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the
transverse momentum distributions for \phi mesons are observed to be similar in
yield and shape for Cu+Cu and Au+Au colliding systems with similar average
numbers of participating nucleons. The \phi meson yields in nucleus-nucleus
collisions, normalised by the average number of participating nucleons, are
found to be enhanced relative to those from p+p collisions with a different
trend compared to strange baryons. The enhancement for \phi mesons is observed
to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations
for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision
energies, the source of enhancement of strange hadrons is related to the
formation of a dense partonic medium in high energy nucleus-nucleus collisions
and cannot be alone due to canonical suppression of their production in smaller
systems.Comment: 20 pages and 5 figure
- …