5 research outputs found

    Structure and chromosomal location of the bovine gene for the heart muscle isoform of cytochrome c oxidase subunit VIII

    Full text link
    We have isolated the bovine COX8H gene for the heart/muscle isoform of cytochrome c oxidase (COX) subunit VIII from a library of bovine genomic DNA cloned into lambda EMBL3. Primer extension assays on bovine heart mRNA mapped the 5′ ends of COX8H transcripts to a CA dinucleotide 62-bp upstream from the ATG codon. The gene thus spans 1565-bp and comprises two exons and one large intron of 1227 bp. Exon 1 encodes the 5′ untranslated region, a 24-amino acid presequence, and the first 13 amino acids of the mature COX VIII-H protein. Exon 2 encodes the remainder of the cDNA: amino acids 14 to 46 plus the 66-bp 3′ untranslated region. The exon-intron boundaries matched the consensus splice junction sequences. Two protein polymorphisms were seen: an Ala/Val polymorphism at position-6 in the presequence and the previously noted Lys/Arg polymorphism at residue 7 of the mature protein. A Taq I polymorphism occurs in the intron. The COX8H gene was mapped by bovine x rodent somatic cell hybrid mapping panels to bovine (BTA) Chromosome (Chr) 25 with 100% concordancy. BTA25 is conserved relative to the long arm of human (HSA) Chr 11, which contains COX8, the gene for the single human COX VIII subunit that is homologous to the liver isoform.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47018/1/335_2004_Article_BF00303255.pd

    NCEAS/pfx-commercial: pfx-commercial v1.0

    No full text
    <p>Code for 'Benefits and risks of diversification for individual fishers'. Anderson et al. 2017 PNAS https://doi.org/10.1073/pnas.1702506114</p> <p>This is an archived version of https://github.com/NCEAS/pfx-commercial</p> <p>Please see the GitHub link for the most recent version.</p

    Changing times, spaces, and faces: tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes

    No full text
    The phenotypic diversity exhibited within and among populations of freshwater fishes in postglacial lakes has intrigued biologists for two reasons: (i) their high phenotypic variation and (ii) the apparently recent and rapid divergence of forms. Genetic and ecological studies of these taxa are shedding new light on mechanisms of divergence and species formation. Surprisingly, the roles of phenotypic plasticity in the origins, maintenance, and generation of phenotypic diversity in this system are rarely directly addressed. We synthesize the available literature on morphological plasticity in these fishes and, using a meta-analysis, test for adaptive plasticity. We conclude that (i) morphological plasticity is common in at least six families of northern freshwater fishes, (ii) plastic responses can often be induced by conditions related to littoral and pelagic lake environments, (iii) plasticity often represents adaptive responses to conditions in these habitats, and (iv) that although rarely tested, heritable variation in morphological plasticity is present. The rich amount of phenotypic plasticity has not constrained recent adaptive divergence and species formation in postglacial fishes, and instead plasticity may play a role in the notably high rates of divergence observed in these and other fishes currently undergoing adaptive radiation

    The bovine genome map

    No full text
    corecore