31 research outputs found

    A computational study of substituted flavylium salts and their quinonoidal conjugate-bases: S0 -> S1 electronic transition, absolute pKa and reduction potential calculations by DFT and semiempirical methods

    Full text link
    The electronic transitions for flavylium cations and quinonoidal bases of 17 substituted flavylium salts have been studied at semiempirical and DFT (density functional theory) levels. Solvent effect on electronic spectra was included by Polarizable Continuum Model, PCM. We assigned longest-wavelength absorption maxima to HOMO -> LUMO transition. Both levels of theory gave good results for electronic transitions of flavylium cations whereas only TDDFT-PCM calculations could be used for electronic transitions of their quinonoidal bases. We also performed absolute pKa calculations of nine flavylium salts at DFT level. The pKa calculated values by our PCM parameterization gave excellent results with mean absolute deviation less than a half of one pKa unit. One-electron reduction potentials were carried out for 5 flavylium cations at DFT level. The theoretical results found were in good agreement with experimental values after adjustment for a systematic deviation

    MECANISMOS FISIOLÓGICOS E FISIOPATOLÓGICOS DETERMINANTES DA ATIVIDADE VASOMOTORA SIMPÁTICA

    Get PDF
    The sympathetic vasomotor activity is one of determinants of blood pressure (BP). Understanding the mechanisms involved in the control of the cardiovascular system is important in physiological and pathophysiological condition. The principal sympathetic premotor brain nuclei are confined in the paraventricular nucleus of hypothalamus (PVN) and in the rostralventrolateral medulla (RVLM). In different patophysiological condition, there is an increase in the sympathetic vasomotor tone, in part due to an increase in the activity of the PVN and RVLM neurons. In this brief review, we discussed the major mechanisms of sympathetic activation in different experimental models: 1) renovascular hypertension, 2) renoprival hypertension, 3) cardiac failure, 4) hypertension induced by nitric oxide blockade, 5) obesity and 6) gender differences. The actions of different mediators in the PVN and in the RVLM acting in long term, can change the level of sympathetic nerve activity and blood pressure and therefore, contributing for the progression of cardiovascular disease.A atividade vasomotora simpática é um dos determinantes da pressão arterial (PA). Estabelecer quais são os mecanismos geradores dessa atividade é importante para o entendimento de como o sistema cardiovascular opera, tanto em situações fisiológicas como fisiopatológicas. Os principais grupos pré-motores do simpático estão confinados no núcleo paraventricular do hipotálamo (PVN) e região rostoventrolateral bulbar (RVLM). Em diversas situações fisiopatológicas há aumento na atividade vasomotora simpática, em parte conseqüente a maior atividade dos neurônios do PVN e RVLM. Nesta breve revisão, foram discutidos os principais mecanismos de ativação simpática em diferentes modelos experimentais: 1) hipertensão renovascular, 2) hipertensão por baixa massa renal, 3) insuficiência cardíaca, 4) hipertensão por bloqueio do óxido nítrico, 5) obesidade e 6) dimorfismo sexual. As ações de diferentes mediadores sobre o PVN e RVLM podem em longo prazo determinar novos patamares de atividade simpática, modificando os níveis tensionais e dessa forma, contribuir para a progressão da doença cardiovascular

    Picosecond Dynamics of Proton Transfer of a 7-Hydroxyflavylium Salt in Aqueous-Organic Solvent Mixtures

    No full text
    The intermediacy of the geminate base proton pair (A*center dot center dot center dot H(+)) in excited-state proton-transfer (ESPT) reactions (two-step mechanism) has been investigated employing the synthetic flavylium salt 7-hydroxy-4-methyl-flavylium chloride (HMF). In aqueous solution, the ESPT mechanism involves solely the excited acid AH* and base A* forms of HMF as indicated by the fluorescence spectra and double-exponential fluorescence decays (two species, two decay times). However, upon addition of either 1,4-dioxane or 1,2-propylene glycol, the decays become triple-exponential with a term consistent with the presence of the geminate base proton pair A*center dot center dot center dot H(+). The geminate pair becomes detectable because of the increase in the recombination rate constant, k(rec), of (A*center dot center dot center dot H(+)) with increasing the mole fraction of added organic cosolvent. Because the two-step ESPT mechanism splits the intrinsic prototropic reaction rates (deprotonation of AH(+)*, k(d), and recombination, k(rec) of A*center dot center dot center dot H(+)) from the diffusion controlled rates (dissociation, k(diss) and formation, k(diff)[H(+)], of A*center dot center dot center dot H+), the experimental detection of the geminate pair provides a wealth of information on the proton-transfer reaction (k(d) and k(rec)) as well as on proton diffusion/migration (k(diss) and k(diff)).Fundação para a Ciência e a Tecnologia de Portugal (FCT)Fundacao para a Ciencia e Tecnologia (FCT), Portugal[PTDC/QUI/65728/2006]Fundação para a Ciência e a Tecnologia de Portugal (FCT)Fundacao para a Ciencia e Tecnologia (FCT), Portugal[PEst-OE/QUI/UI0100/2011]GRICESCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES-GRICESFundação para a Ciência e a Tecnologia de Portugal (FCT)FCT[SFRH/BPD/34820/2007

    Ionic Liquids and Water: Hydrophobicity vs. Hydrophilicity

    No full text
    Many chemical processes rely extensively on organic solvents posing safety and environmental concerns. For a successful transfer of some of those chemical processes and reactions to aqueous media, agents acting as solubilizers, or phase-modifiers, are of central importance. In the present work, the structure of aqueous solutions of several ionic liquid systems capable of forming multiple solubilizing environments were modeled by molecular dynamics simulations. The effect of small aliphatic chains on solutions of hydrophobic 1-alkyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ionic liquids (with alkyl = propyl [C3C1im][NTf2], butyl [C4C1im][NTf2] and isobutyl [iC4C1im][NTf2]) are covered first. Next, we focus on the interactions of sulphonate- and carboxylate-based anions with different hydrogenated and perfluorinated alkyl side chains in solutions of [C2C1im][CnF2n+1SO3], [C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2] and [C2C1im][CH3CO2] (n = 1, 4, 8). The last system considered is an ionic liquid completely miscible with water that combines the cation N-methyl-N,N,N-tris(2-hydroxyethyl)ammonium [N1 2OH 2OH 2OH]+, with high hydrogen-bonding capability, and the hydrophobic anion [NTf2]–. The interplay between short- and long-range interactions, clustering of alkyl and perfluoroalkyl tails, and hydrogen bonding enables a wealth of possibilities in tailoring an ionic liquid solution according to the needs
    corecore