5,049 research outputs found
Universal scaling in BCS superconductivity in two dimensions in non-s waves
The solutions of a renormalized BCS model are studied in two space dimensions
in , and waves for finite-range separable potentials. The gap
parameter, the critical temperature , the coherence length and the
jump in specific heat at as a function of zero-temperature condensation
energy exhibit universal scalings. In the weak-coupling limit, the present
model yields a small and large appropriate to those for high-
cuprates. The specific heat, penetration depth and thermal conductivity as a
function of temperature show universal scaling in and waves.Comment: 11 pages, LATEX, 4 postscript figures embedded using eps
Dynamics of quasi-one-dimensional bright and vortex solitons of a dipolar Bose-Einstein condensate with repulsive atomic interaction
By numerical and variational analysis of the three-dimensional
Gross-Pitaevskii equation we study the formation and dynamics of bright and
vortex-bright solitons in a cigar-shaped dipolar Bose-Einstein condensate for
large repulsive atomic interactions. Phase diagram showing the region of
stability of the solitons is obtained. We also study the dynamics of breathing
oscillation of the solitons as well as the collision dynamics of two solitons
at large velocities. Two solitons placed side-by-side at rest coalesce to form
a stable bound soliton molecule due to dipolar attraction.Comment: To obtain the included video clips S1, S2, S3 and S4, please download
sourc
Two phase transitions in (s+id)-wave Bardeen-Cooper-Schrieffer superconductivity
We establish universal behavior in temperature dependencies of some
observables in -wave BCS superconductivity in the presence of a weak
wave. There also could appear a second second-order phase transition. As
temperature is lowered past the usual critical temperature , a less
ordered superconducting phase is created in wave, which changes to a more
ordered phase in wave at (). The presence of two phase
transitions manifest in two jumps in specific heat at and . The
temperature dependencies of susceptibility, penetration depth, and thermal
conductivity also confirm the new phase transition.Comment: 6 pages, 5 post-script figures
Entanglement witness operator for quantum teleportation
The ability of entangled states to act as resource for teleportation is
linked to a property of the fully entangled fraction. We show that the set of
states with their fully entangled fraction bounded by a threshold value
required for performing teleportation is both convex and compact. This feature
enables for the existence of hermitian witness operators the measurement of
which could distinguish unknown states useful for performing teleportation. We
present an example of such a witness operator illustrating it for different
classes of states.Comment: Minor revisions to match the published version. Accepted for
publication in Physical Review Letter
Symbiotic gap and semi-gap solitons in Bose-Einstein condensates
Using the variational approximation and numerical simulations, we study
one-dimensional gap solitons in a binary Bose-Einstein condensate trapped in an
optical-lattice potential. We consider the case of inter-species repulsion,
while the intra-species interaction may be either repulsive or attractive.
Several types of gap solitons are found: symmetric or asymmetric; unsplit or
split, if centers of the components coincide or separate; intra-gap (with both
chemical potentials falling into a single bandgap) or inter-gap, otherwise. In
the case of the intra-species attraction, a smooth transition takes place
between solitons in the semi-infinite gap, the ones in the first finite
bandgap, and semi-gap solitons (with one component in a bandgap and the other
in the semi-infinite gap).Comment: 5 pages, 9 figure
Conditions for the Thermal Instability in the Galactic Centre Mini-spiral region
We explore the conditions for the thermal instability to operate in the
mini-spiral region of the Galactic centre (Sgr A*), where both the hot and cold
media are known to coexist. The photoionisation Cloudy calculations are
performed for different physical states of plasma. We neglect the dynamics of
the material and concentrate on the study of the parameter ranges where the
thermal instability may operate, taking into account the past history of Sgr A*
bolometric luminosity. We show that the thermal instability does not operate at
the present very low level of the Sgr A* activity. However, Sgr A* was much
more luminous in the past. For the highest luminosity states the two-phase
medium can be created up to 1.4 pc from the centre. The presence of dust grains
tends to suppress the instability, but the dust is destroyed in the presence of
strong radiation field and hot plasma. The clumpiness is thus induced in the
high activity period, and the cooling/heating timescales are long enough to
preserve later the past multi-phase structure. The instability enhances the
clumpiness of the mini-spiral medium and creates a possibility of episodes of
enhanced accretion of cold clumps towards Sgr A*. The mechanism determines the
range of masses and sizes of clouds; under the conditions of Sgr A*, the likely
values come out - for the cloud typical mass.Comment: Accepted for publication in MNRAS, 10 pages, 7 figure
Localization of a dipolar Bose-Einstein condensate in a bichromatic optical lattice
By numerical simulation and variational analysis of the Gross-Pitaevskii
equation we study the localization, with an exponential tail, of a dipolar
Bose-Einstein condensate (DBEC) of Cr atoms in a three-dimensional
bichromatic optical-lattice (OL) generated by two monochromatic OL of
incommensurate wavelengths along three orthogonal directions. For a fixed
dipole-dipole interaction, a localized state of a small number of atoms () could be obtained when the short-range interaction is not too attractive
or not too repulsive. A phase diagram showing the region of stability of a DBEC
with short-range interaction and dipole-dipole interaction is given
- …