22 research outputs found

    Concentrations of polybrominated diphenyl ethers (PBDEs) and 2,4,6-tribromophenol in human placental tissues

    No full text
    Legacy environmental contaminants such as polybrominated diphenyl ethers (PBDEs) are widely detected in human tissues. However, few studies have measured PBDEs in placental tissues, and there are no reported measurements of 2,4,6-tribromophenol (2,4,6-TBP) in placental tissues. Measurements of these contaminants are important for understanding potential fetal exposures, as these compounds have been shown to alter thyroid hormone regulation in vitro and in vivo. In this study, we measured a suite of PBDEs and 2,4,6-TBP in 102 human placental tissues collected between 2010 and 2011 in Durham County, North Carolina, USA. The most abundant PBDE congener detected was BDE-47, with a mean concentration of 5.09 ng/g lipid (range: 0.12–141 ng/g lipid; detection frequency 91%); however, 2,4,6-TBP was ubiquitously detected and present at higher concentrations with a mean concentration of 15.4 ng/g lipid (range:1.31–316 ng/g lipid; detection frequency 100%). BDE-209 was also detected in more than 50% of the samples, and was significantly associated with 2,4,6-TBP in placental tissues, suggesting they may have a similar source, or that 2,4,6-TBP may be a degradation product of BDE-209. Interestingly, BDE-209 and 2,4,6-TBP were negatively associated with age (rs = − 0.16; p = 0.10 and rs = − 0.17; p = 0.08, respectively). The results of this work indicate that PBDEs and 2,4,6-TBP bioaccumulate in human placenta tissue and likely contribute to prenatal exposures to these environmental contaminants. Future studies are needed to determine if these joint exposures are associated with any adverse health measures in infants and children

    Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats

    No full text
    CONTEXT: Air pollution exposure affects autonomic function, heart rate, blood pressure and left ventricular function. While the mechanism for these effects is uncertain, several studies have reported that air pollution exposure modifies activity of the carotid body, the major organ that senses changes in arterial oxygen and carbon dioxide levels, and elicits downstream changes in autonomic control and cardiac function. OBJECTIVE: We hypothesized that exposure to acrolein, an unsaturated aldehyde and mucosal irritant found in cigarette smoke and diesel exhaust, would activate the carotid body chemoreceptor response and lead to secondary cardiovascular responses in rats. MATERIALS AND METHODS: Spontaneously hypertensive (SH) rats were exposed once for 3 h to 3 ppm acrolein gas or filtered air in whole body plethysmograph chambers. To determine if the carotid body mediated acrolein-induced cardiovascular responses, rats were pretreated with an inhibitor of cystathionine γ-lyase (CSE), an enzyme essential for carotid body signal transduction. RESULTS: Acrolein exposure induced several cardiovascular effects. Systolic, diastolic and mean arterial blood pressure increased during exposure, while cardiac contractility decreased 1 day after exposure. The cardiovascular effects were associated with decreases in pO(2), breathing frequency and expiratory time, and increases in sympathetic tone during exposure followed by parasympathetic dominance after exposure. The CSE inhibitor prevented the cardiovascular effects of acrolein exposure. DISCUSSION AND CONCLUSION: Pretreatment with the CSE inhibitor prevented the cardiovascular effects of acrolein, suggesting that the cardiovascular responses with acrolein may be mediated by carotid body-triggered changes in autonomic tone. (This abstract does not reflect EPA policy.
    corecore