53 research outputs found

    SigE facilitates the adaptation of Bordetella bronchiseptica to stress conditions and lethal infection in immunocompromised mice

    Get PDF
    Background: The cell envelope of a bacterial pathogen can be damaged by harsh conditions in the environment outside a host and by immune factors during infection. Cell envelope stress responses preserve the integrity of this essential compartment and are often required for virulence. Bordetella species are important respiratory pathogens that possess a large number of putative transcription factors. However, no cell envelope stress responses have been described in these species. Among the putative Bordetella transcription factors are a number of genes belonging to the extracytoplasmic function (ECF) group of alternative sigma factors, some of which are known to mediate cell envelope stress responses in other bacteria. Here we investigate the role of one such gene, sigE, in stress survival and pathogenesis of Bordetella bronchiseptica. Results: We demonstrate that sigE encodes a functional sigma factor that mediates a cell envelope stress response. Mutants of B. bronchiseptica strain RB50 lacking sigE are more sensitive to high temperature, ethanol, and perturbation of the envelope by SDS-EDTA and certain -lactam antibiotics. Using a series of immunocompromised mice deficient in different components of the innate and adaptive immune responses, we show that SigE plays an important role in evading the innate immune response during lethal infections of mice lacking B cells and T cells. SigE is not required, however, for colonization of the respiratory tract of immunocompetent mice. The sigE mutant is more efficiently phagocytosed and killed by peripheral blood polymorphonuclear leukocytes (PMNs) than RB50, and exhibits decreased cytotoxicity toward macrophages. These altered interactions with phagocytes could contribute to the defects observed during lethal infection. Conclusions: Much of the work on transcriptional regulation during infection in B. bronchiseptica has focused on the BvgAS two-component system. This study reveals that the SigE regulon also mediates a discrete subset of functions associated with virulence. SigE is the first cell envelope stress-sensing system to be described in the bordetellae. In addition to its role during lethal infection of mice deficient in adaptive immunity, our results indicate that SigE is likely to be important for survival in the face of stresses encountered in the environment between hosts.Facultad de Ciencias Exacta

    Engrailed (Gln50→Lys) homeodomain–DNA complex at 1.9 Å resolution: structural basis for enhanced affinity and altered specificity

    Get PDF
    AbstractBackground: The homeodomain is one of the key DNA-binding motifs used in eukaryotic gene regulation, and homeodomain proteins play critical roles in development. The residue at position 50 of many homeodomains appears to determine the differential DNA-binding specificity, helping to distinguish among binding sites of the form TAATNN. However, the precise role(s) of residue 50 in the differential recognition of alternative sites has not been clear. None of the previously determined structures of homeodomain–DNA complexes has shown evidence for a stable hydrogen bond between residue 50 and a base, and there has been much discussion, based in part on NMR studies, about the potential importance of water-mediated contacts. This study was initiated to help clarify some of these issues.Results: The crystal structure of a complex containing the engrailed Gln50→Lys variant (QK50) with its optimal binding site TAATCC (versus TAATTA for the wild-type protein) has been determined at 1.9 Å resolution. The overall structure of the QK50 variant is very similar to that of the wild-type complex, but the sidechain of Lys50 projects directly into the major groove and makes several hydrogen bonds to the O6 and N7 atoms of the guanines at base pairs 5 and 6. Lys50 also makes an additional water-mediated contact with the guanine at base pair 5 and has an alternative conformation that allows a hydrogen bond with the O4 of the thymine at base pair 4.Conclusions: The structural context provided by the folding and docking of the engrailed homeodomain allows Lys50 to make remarkably favorable contacts with the guanines at base pairs 5 and 6 of the binding site. Although many different residues occur at position 50 in different homeodomains, and although numerous position 50 variants have been constructed, the most striking examples of altered specificity usually involve introducing or removing a lysine sidechain from position 50. This high-resolution structure also confirms the critical role of Asn51 in homeodomain–DNA recognition and further clarifies the roles of water molecules near residues 50 and 51

    Modelling the potential effectiveness of hepatitis C screening and treatment strategies during pregnancy in Egypt and Ukraine

    Get PDF
    BACKGROUND & AIMS: Hepatitis C (HCV) test and treat campaigns currently excludes pregnant women. Pregnancy offers a unique opportunity for HCV screening and to potentially initiate direct-acting-antiviral treatment. We explored HCV screening and treatment strategies in two lower middle-income countries with high HCV prevalence, Egypt and Ukraine. METHODS: Country-specific probabilistic decision models were developed to simulate a cohort of pregnant women. We compared five strategies: S0, targeted risk-based screening and deferred treatment (DT) to after pregnancy/breastfeeding; S1, WHO risk-based screening and DT; S2, WHO risk-based screening and targeted treatment (treat women with risk factors for HCV vertical transmission (VT)); S3, universal screening and targeted treatment during pregnancy; S4, universal screening and treatment. Maternal and infant HCV outcomes were projected. RESULTS: S0 resulted in the highest proportion of women undiagnosed:59% and 20% in Egypt and Ukraine, respectively, with 0% maternal cure by delivery and VT estimated at 6.5% and 7.9%, respectively. WHO risk-based screening and DT (S1) increased the proportion of women diagnosed with no change in maternal cure or VT. Universal screening and treatment during pregnancy (S4) resulted in the highest proportion of women diagnosed and cured by delivery (65% and 70% respectively), and lower levels of VT (3.4% and 3.6% respectively). CONCLUSIONS: This is one of the first models to explore HCV screening and treatment strategies in pregnancy, which will be critical in informing future care and policy as more safety/efficacy data emerge. Universal screening and treatment in pregnancy could potentially improve both maternal and infant outcomes. IMPACT AND IMPLICATIONS: In the context of two lower middle-income countries with high HCV burden (Egypt and Ukraine), we designed a decision analytic model to explore five different HCV testing and treatment strategies for pregnant women, with the assumption that treatment was safe and efficacious for use in pregnancy. Assuming DAAs in pregnancy reduced vertical transmission, model findings indicate optimal maternal and infant benefits with provision of universal (rather than risk-based targeted) screening and treatment during pregnancy: the proportion of women diagnosed and cured by delivery would be 65% in Egypt and 70% in Ukraine (versus 0% with standard of care), and the proportion of infants that would be infected at the age of 6 months would decrease from 6.5% to 3.4% in Egypt, and from 7.9% to 3.6% in Ukraine, compared to standard of care. While future trials are needed to assess safety and efficacy of DAA treatment in pregnancy and impact on VT, there is increasing recognition that the elimination of HCV cannot leave entire subpopulations of pregnant women and young children behind. Our findings will be critical in informing policymakers in improving screening and treatment recommendations for pregnant women

    Sera selected from national STI surveillance system shows Chlamydia trachomatis PgP3 antibody correlates with time since infection and number of previous infections

    Get PDF
    Pgp3 seropositivity by time since most recent chlamydia diagnosis on a) the indirect ELISA and b) the double-antigen ELISA (Denominator labelled on bar. Error bars represent 95% confidence intervals).</p

    Pressure RElieving Support SUrfaces: a Randomised Evaluation 2 (PRESSURE 2): study protocol for a randomised controlled trial

    Get PDF
    Background Pressure ulcers represent a major burden to patients, carers and the healthcare system, affecting approximately 1 in 17 hospital and 1 in 20 community patients. They impact greatly on an individual’s functional status and health-related quality of life. The mainstay of pressure ulcer prevention practice is the provision of pressure redistribution support surfaces and patient repositioning. The aim of the PRESSURE 2 study is to compare the two main mattress types utilised within the NHS: high-specification foam and alternating pressure mattresses, in the prevention of pressure ulcers. Methods/Design PRESSURE 2 is a multicentre, open-label, randomised, double triangular, group sequential, parallel group trial. A maximum of 2954 ‘high-risk’ patients with evidence of acute illness will be randomised on a 1:1 basis to receive either a high-specification foam mattress or alternating-pressure mattress in conjunction with an electric profiling bed frame. The primary objective of the trial is to compare mattresses in terms of the time to developing a new Category 2 or above pressure ulcer by 30 days post end of treatment phase. Secondary endpoints include time to developing new Category 1 and 3 or above pressure ulcers, time to healing of pre-existing Category 2 pressure ulcers, health-related quality of life, cost-effectiveness, incidence of mattress change and safety. Validation objectives are to determine the responsiveness of the Pressure Ulcer Quality of Life-Prevention instrument and the feasibility of having a blinded endpoint assessment using photography. The trial will have a maximum of three planned analyses with unequally spaced reviews at event-driven coherent cut-points. The futility boundaries are constructed as non-binding to allow a decision for stopping early to be overruled by the Data Monitoring and Ethics Committee. Discussion The double triangular, group sequential design of the PRESSURE 2 trial will provide an efficient design through the possibility of early stopping for demonstrating either superiority, inferiority of mattresses or futility of the trial. The trial optimises the potential for producing robust clinical evidence on the effectiveness of two commonly used mattresses in clinical practice earlier than in a conventional design

    Proceedings of Patient Reported Outcome Measure’s (PROMs) Conference Oxford 2017: Advances in Patient Reported Outcomes Research

    Get PDF
    A33-Effects of Out-of-Pocket (OOP) Payments and Financial Distress on Quality of Life (QoL) of People with Parkinson’s (PwP) and their Carer

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Growth Phase-Dependent Regulation of the Extracytoplasmic Stress Factor, σ(E), by Guanosine 3′,5′-Bispyrophosphate (ppGpp)

    No full text
    The sigma subunit of procaryotic RNA polymerases is responsible for specific promoter recognition and transcription initiation. In addition to the major sigma factor, σ(70), in Escherichia coli, which directs most of the transcription in the cell, bacteria possess multiple, alternative sigma factors that direct RNA polymerase to distinct sets of promoters in response to environmental signals. By activating an alternative sigma factor, gene expression can be rapidly reprogrammed to meet the needs of the cell as the environment changes. Sigma factors are subject to multiple levels of regulation that control their levels and activities. The alternative sigma factor σ(E) in Escherichia coli is induced in response to extracytoplasmic stress. Here we demonstrate that σ(E) can also respond to signals other than extracytoplasmic stress. σ(E) activity increases in a growth phase-dependent manner as a culture enters stationary phase. The signaling pathway that activates σ(E) during entry into stationary phase is dependent upon the alarmone guanosine 3′,5′-bispyrophosphate (ppGpp) and is distinct from the pathway that signals extracytoplasmic stress. ppGpp is the first cytoplasmic factor shown to control σ(E) activity, demonstrating that σ(E) can respond to internal signals as well as signals originating in the cell envelope. ppGpp is a general signal of starvation stress and is also required for activation of the σ(S) and σ(54) alternative sigma factors upon entry into stationary phase, suggesting that this is a key mechanism by which alternative sigma factors can be activated in concert to provide a coordinated response to nutritional stress

    The Rcs Phosphorelay Is a Cell Envelope Stress Response Activated by Peptidoglycan Stress and Contributes to Intrinsic Antibiotic Resistance▿ †

    No full text
    Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth, new peptidoglycan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the β-lactam antibiotics amdinocillin (mecillinam) and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to β-lactam antibiotics

    The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in Escherichia coli.

    Get PDF
    Extracytoplasmic function or ECF sigma factors are the most abundant class of alternative sigma factors in bacteria. Members of the rpoE subclass of ECF sigma factors are implicated in sensing stress in the cell envelope of Gram-negative bacteria and are required for virulence in many pathogens. The best-studied member of this family is rpoE from Escherichia coli, encoding the sigma(E) protein. sigma(E) has been well studied for its role in combating extracytoplasmic stress, and the members of its regulon have been largely defined. sigma(E) is required for viability of E. coli, yet none of the studies to date explain why sigma(E) is essential in seemingly unstressed cells. In this work we investigate the essential role of sigma(E) in E. coli by analyzing the phenotypes associated with loss of sigma(E) activity and isolating suppressors that allow cells to live in the absence of sigma(E). We demonstrate that when sigma(E) is inhibited, cell envelope stress increases and envelope integrity is lost. Many cells lyse and some develop blebs containing cytoplasmic material along their sides. To better understand the connection between transcription by sigma(E) and cell envelope integrity, we identified two multicopy suppressors of the essentiality of sigma(E), ptsN and yhbW. yhbW is a gene of unknown function, while ptsN is a member of the sigma(E) regulon. Overexpression of ptsN lowers the basal level of multiple envelope stress responses, but not that of a cytoplasmic stress response. Our results are consistent with a model in which overexpression of ptsN reduces stress in the cell envelope, thereby promoting survival in the absence of sigma(E)
    corecore