32 research outputs found

    Four-quark stability

    Get PDF
    The physics of charm has become one of the best laboratories exposing the limitations of the naive constituent quark model and also giving hints into a more mature description of meson spectroscopy, beyond the simple quark--antiquark configurations. In this talk we review some recent studies of multiquark components in the charm sector and discuss in particular exotic and non-exotic four-quark systems, both with pairwise and many-body forces.Comment: 6 pages. Article based on the presentations by J. Vijande and J.-M. Richard at the Fifth Workshop on Critical Stability, Erice, Sicil

    From Tetraquark to Hexaquark: A Systematic Study of Heavy Exotics in the Large NcN_c Limit

    Get PDF
    A systematic study of multiquark exotics with one or Nc1N_c-1 heavy quarks in the large NcN_c limit is presented. By binding a chiral soliton to a heavy meson, either a normal NcN_c-quark baryon or an exotic (Nc+2)(N_c+2)-quark baryon is obtained. By replacing the heavy quark with Nc1N_c-1 heavy antiquarks, exotic (2Nc2)(2N_c-2)-quark and 2Nc2N_c-quark mesons are obtained. When Nc=3N_c = 3, they are just the normal triquark baryon QqqQqq, the exotic pentaquark baryon QqˉqˉqˉqˉQ\bar q\bar q\bar q\bar q, tetraquark di-meson QˉQˉqq\bar Q \bar Q qq and the hexaquark di-baryon QˉQˉqˉqˉ barqqˉ\bar Q \bar Q \bar q \bar q\ bar q \bar q respectively. Their stabilities and decays are also discussed. In particular, it is shown that the ``heavy to heavy'' semileptonic decays are described by the Isgur--Wise form factors of the normal baryons.Comment: 14 pages in REVTeX, no Figure

    Zero temperature phases of the frustrated J1-J2 antiferromagnetic spin-1/2 Heisenberg model on a simple cubic lattice

    Full text link
    At zero temperature magnetic phases of the quantum spin-1/2 Heisenberg antiferromagnet on a simple cubic lattice with competing first and second neighbor exchanges (J1 and J2) is investigated using the non-linear spin wave theory. We find existence of two phases: a two sublattice Neel phase for small J2 (AF), and a collinear antiferromagnetic phase at large J2 (CAF). We obtain the sublattice magnetizations and ground state energies for the two phases and find that there exists a first order phase transition from the AF-phase to the CAF-phase at the critical transition point, pc = 0.28. Our results for the value of pc are in excellent agreement with results from Monte-Carlo simulations and variational spin wave theory. We also show that the quartic 1/S corrections due spin-wave interactions enhance the sublattice magnetization in both the phases which causes the intermediate paramagnetic phase predicted from linear spin wave theory to disappear.Comment: 19 pages, 4 figures, Fig. 1b modified, Appendix B text modifie

    Monotonicity of quantum ground state energies: Bosonic atoms and stars

    Full text link
    The N-dependence of the non-relativistic bosonic ground state energy is studied for quantum N-body systems with either Coulomb or Newton interactions. The Coulomb systems are "bosonic atoms," with their nucleus fixed, and the Newton systems are "bosonic stars". In either case there exists some third order polynomial in N such that the ratio of the ground state energy to the respective polynomial grows monotonically in N. Some applications of these new monotonicity results are discussed

    The K^*_0(800) scalar resonance from Roy-Steiner representations of pi K scattering

    Get PDF
    We discuss the existence of the light scalar meson K^*_0(800) (also called kappa) in a rigorous way, by showing the presence of a pole in the pi K --> pi K amplitude on the second Riemann sheet. For this purpose, we study the domain of validity of two classes of Roy-Steiner representations in the complex energy plane. We prove that one of them is valid in a region sufficiently broad in the imaginary direction. From this representation, we compute the l=0 partial wave in the complex plane with neither additional approximation nor model dependence, relying only on experimental data. A scalar resonance with strangeness S=1 is found with the following mass and width: E_kappa = 658 \pm 13 MeV and Gamma_kappa = 557 \pm 24 MeV.Comment: 16 pages, 8 figures. Domain of validity of a Roy-Steiner representation corrected and enlarged, and features of the K^*_0(800) pole discussed in more details. Conclusions unchange

    Non-Abelian dynamics and heavy multiquarks, Steiner-tree confinement in hadron spectroscopy

    Full text link
    A brief review is first presented of attempts to predict stable multiquark states within current models of hadron spectroscopy. Then a model combining flip-flop and connected Steiner trees is introduced and shown to lead to stable multiquarks, in particular for some configurations involving several heavy quarks and bearing exotic quantum numbers.Comment: 8 pages, 5 figures, Invited talk at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, August 29th--September 3rd, 2010, to appear in the Proceedings, ed.~A.~Valcarce et al., to appear in Few-Body Syste
    corecore