31 research outputs found
Channel Prediction for Mobile MIMO Wireless Communication Systems
Temporal variation and frequency selectivity of wireless channels constitute
a major drawback to the attainment of high gains in capacity
and reliability offered by multiple antennas at the transmitter and receiver
of a mobile communication system. Limited feedback and adaptive transmission
schemes such as adaptive modulation and coding, antenna selection,
power allocation and scheduling have the potential to provide the platform
of attaining the high transmission rate, capacity and QoS requirements in
current and future wireless communication systems. Theses schemes require
both the transmitter and receiver to have accurate knowledge of Channel
State Information (CSI). In Time Division Duplex (TDD) systems, CSI at
the transmitter can be obtained using channel reciprocity. In Frequency Division
Duplex (FDD) systems, however, CSI is typically estimated at the
receiver and fed back to the transmitter via a low-rate feedback link. Due to
the inherent time delays in estimation, processing and feedback, the CSI obtained
from the receiver may become outdated before its actual usage at the
transmitter. This results in significant performance loss, especially in high
mobility environments. There is therefore a need to extrapolate the varying
channel into the future, far enough to account for the delay and mitigate the
performance degradation.
The research in this thesis investigates parametric modeling and prediction
of mobile MIMO channels for both narrowband and wideband systems.
The focus is on schemes that utilize the additional spatial information offered
by multiple sampling of the wave-field in multi-antenna systems to
aid channel prediction. The research has led to the development of several
algorithms which can be used for long range extrapolation of time-varyingchannels. Based on spatial channel modeling approaches, simple and efficient
methods for the extrapolation of narrowband MIMO channels are proposed.
Various extensions were also developed. These include methods for wideband
channels, transmission using polarized antenna arrays, and mobile-to-mobile
systems.
Performance bounds on the estimation and prediction error are vital when
evaluating channel estimation and prediction schemes. For this purpose, analytical
expressions for bound on the estimation and prediction of polarized
and non-polarized MIMO channels are derived. Using the vector formulation
of the Cramer Rao bound for function of parameters, readily interpretable
closed-form expressions for the prediction error bounds were found for cases
with Uniform Linear Array (ULA) and Uniform Planar Array (UPA). The
derived performance bounds are very simple and so provide insight into system
design.
The performance of the proposed algorithms was evaluated using standardized
channel models. The effects of the temporal variation of multipath
parameters on prediction is studied and methods for jointly tracking the
channel parameters are developed. The algorithms presented can be utilized
to enhance the performance of limited feedback and adaptive MIMO
transmission schemes
Relaying in the Internet of Things (IoT): A Survey
The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions
Learning Parameters of Stochastic Radio Channel Models from Summaries
Estimating parameters of stochastic radio channel models based on new measurement data is an arduous task usually involving multiple steps such as multipath extraction and clustering. We propose two different machine learning methods, one based on approximate Bayesian computation (ABC) and the other on deep learning, for fitting stochastic channel models to data directly. The proposed methods make use of easy-to-compute summary statistics of measured data instead of relying on extracted multipath components. Moreover, the need for post-processing of the extracted multipath components is omitted. Taking the polarimetric propagation graph model as an example stochastic model, we present relevant summaries and evaluate the performance of the proposed methods on simulated and measured data. We find that the methods are able to learn the parameters of the model accurately in simulations. Applying the methods on 60 GHz indoor measurement data yields parameter estimates that generate averaged power delay profile from the model that fits the data