272 research outputs found

    Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050

    Get PDF
    Policies to reduce greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to a reference scenario, global GHG reductions in RCP4.5 avoid 16000 PM2.5-related all-cause deaths yr-1 (90% confidence interval, 11700-20300), and 8000 (3600-12400) O3-related respiratory deaths yr-1 in the US in 2050. Foreign GHG mitigation avoids 15% and 62% of PM2.5- and O3-related total avoided deaths, highlighting the importance of foreign GHG mitigation on US human health benefits. GHG mitigation in the US residential sector brings the largest co-benefits for PM2.5-related deaths (21% of total domestic co-benefits), and industry for O3 (17%). Monetized benefits, for avoided deaths from ozone, PM2.5, and heat stress from a related study, are 148(148 (96-201) per ton CO2 at high valuation and 49(49 (32-67) at low valuation, of which 36% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greatermore » co-benefits when coordinating GHG reductions with foreign countries. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.« les

    Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050

    Get PDF
    Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m−3) than the west (0–0.4 µg m−3) for fine particulate matter (PM2.5), with an average of 0.47 µg m−3 over the US; for O3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM2.5 (96 % of the total co-benefits) and O3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O3 reduction (76 % of the total) than that from domestic GHG mitigation only (24 %), highlighting the importance of global methane reductions and the intercontinental transport of air pollutants. For PM2.5, the benefits of domestic GHG control are greater (74 % of total). Since foreign contributions to co-benefits can be substantial, with foreign O3 benefits much larger than those from domestic reductions, previous studies that focus on local or regional co-benefits may greatly underestimate the total co-benefits of global GHG reductions. We conclude that the US can gain significantly greater domestic air quality co-benefits by engaging with other nations to control GHGs.</html

    The Space Interferometry Mission Astrometric Grid Giant-Star Survey. I. Stellar Parameters and Radial Velocity Variability

    Full text link
    We present results from a campaign of multiple epoch echelle spectroscopy of relatively faint (V = 9.5-13.5 mag) red giants observed as potential astrometric grid stars for the Space Interferometry Mission (SIM PlanetQuest). Data are analyzed for 775 stars selected from the Grid Giant Star Survey spanning a wide range of effective temperatures (Teff), gravities and metallicities. The spectra are used to determine these stellar parameters and to monitor radial velocity (RV) variability at the 100 m/s level. The degree of RV variation measured for 489 stars observed two or more times is explored as a function of the inferred stellar parameters. The percentage of radial velocity unstable stars is found to be very high -- about 2/3 of our sample. It is found that the fraction of RV-stable red giants (at the 100 m/s level) is higher among stars with Teff \sim 4500 K, corresponding to the calibration-independent range of infrared colors 0.59 < (J-K_s)_0 < 0.73. A higher percentage of RV-stable stars is found if the additional constraints of surface gravity and metallicity ranges 2.3< log g < 3.2 and -0.5 < [Fe/H] < -0.1, respectively, are applied. Selection of stars based on only photometric values of effective temperature (4300 K < Teff < 4700 K) is a simple and effective way to increase the fraction of RV-stable stars. The optimal selection of RV-stable stars, especially in the case when the Washington photometry is unavailable, can rely effectively on 2MASS colors constraint 0.59 < (J-K_s)_0 < 0.73. These results have important ramifications for the use of giant stars as astrometric references for the SIM PlanetQuest.Comment: Astronomical Journal, in press, 22 pages, 11 Postscript figures, uses aastex.cl

    The SEGUE Stellar Parameter Pipeline. IV. Validation with an Extended Sample of Galactic Globular and Open Clusters

    Full text link
    Spectroscopic and photometric data for likely member stars of five Galactic globular clusters (M3, M53, M71, M92, and NGC 5053) and three open clusters (M35, NGC 2158, and NGC 6791) are processed by the current version of the SEGUE Stellar Parameter Pipeline (SSPP), in order to determine estimates of metallicities and radial velocities for the clusters. These results are then compared to values from the literature. We find that the mean metallicity () and mean radial velocity () estimates for each cluster are almost all within 2{\sigma} of the adopted literature values; most are within 1{\sigma}. We also demonstrate that the new version of the SSPP achieves small, but noteworthy, improvements in estimates at the extrema of the cluster metallicity range, as compared to a previous version of the pipeline software. These results provide additional confidence in the application of the SSPP for studies of the abundances and kinematics of stellar populations in the Galaxy.Comment: 98 pages, 31 figures; accepted for publication in A

    Revealing components of the galaxy population through nonparametric techniques

    Get PDF
    The distributions of galaxy properties vary with environment, and are often multimodal, suggesting that the galaxy population may be a combination of multiple components. The behaviour of these components versus environment holds details about the processes of galaxy development. To release this information we apply a novel, nonparametric statistical technique, identifying four components present in the distribution of galaxy Hα\alpha emission-line equivalent-widths. We interpret these components as passive, star-forming, and two varieties of active galactic nuclei. Independent of this interpretation, the properties of each component are remarkably constant as a function of environment. Only their relative proportions display substantial variation. The galaxy population thus appears to comprise distinct components which are individually independent of environment, with galaxies rapidly transitioning between components as they move into denser environments.Comment: 12 pages, 10 figures, accepted for publication in MNRA

    A Petal of the Sunflower: Photometry of the Stellar Tidal Stream in the Halo of Messier 63 (NGC 5055)

    Get PDF
    We present surface photometry of a very faint, giant arc feature in the halo of the nearby spiral galaxy NGC 5055 (M63) that is consistent with being a part of a stellar stream resulting from the disruption of a dwarf satellite galaxy. This faint feature was first detected in early photographic studies by van der Kruit (1979); more recently by Mart\'inez-Delgado et al. (2010) and as presented in this work, the loop has been realized to be the result of a recent minor merger through evidence obtained by deep images taken with a telescope of only 0.16 m aperture. The stellar stream is confirmed in additional images taken with the 0.5 m of the BlackBird Remote Observatory and the 0.8 m of the McDonald Observatory. This low surface brightness structure around the disk of the galaxy extends ~29 kpc from its center, with a projected width of 3.3 kpc. The stream's morphology is consistent with that of the visible part of a "great-circle" stellar stream originating from the accretion of a ~10^8 M_sun dwarf satellite in the last few Gyr. The progenitor satellite's current position and fate are not conclusive from our data. The color of the stream's stars is consistent with Local Group dwarfs and is similar to the outer regions of M63's disk and stellar halo. We detect other low surface brightness "plumes"; some of these may be extended spiral features related to the galaxy's complex spiral structure and others may be tidal debris associated with the disruption of the galaxy's outer stellar disk as a result of the accretion event. We differentiate between features related to the tidal stream and faint, blue features in the outskirts of the galaxy's disk previously detected by the GALEX satellite. With its highly warped HI gaseous disk (~20 deg), M63 represents one of several examples of an isolated spiral galaxy with a warped disk showing strong evidence of an ongoing minor merger.Comment: 16 pages, 10 figures, 3 tables, Accepted for publication in The Astronomical Journa

    Galaxy Zoo: Dust in Spirals

    Get PDF
    We investigate the effect of dust on spiral galaxies by measuring the inclination-dependence of optical colours for 24,276 well-resolved SDSS galaxies visually classified in Galaxy Zoo. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into "bulgy" (early-type) and "disky" (late-type) spirals using the SDSS fracdeV (or f_DeV) parameter and show that the average face-on colour of "bulgy" spirals is redder than the average edge-on colour of "disky" spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disk ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with "disky" spirals at M_r ~ -21.5 mags having the most reddening. This decrease of reddening for the most luminous spirals has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering.Comment: MNRAS in press. 25 pages, 22 figures (including an abstract comparing GZ classifications with common automated methods for selecting disk/early type galaxies in SDSS data). v2 corrects typos found in proof

    Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    Get PDF
    Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies(1-6) typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants(7-9), long-term demographic changes, and the influence of climate change on air quality(10-12). Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: reducing co-emitted air pollutants, and slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter(13) and ozone(14), global modelling methods(15) and new future scenarios(16). Relative to a reference scenario, global GHG mitigation avoids 0.5 +/- 0.2, 1.3 +/- 0.5 and 2.2 +/- 0.8 million premature deaths in 2030, 2050 and 2100. Global average marginal co-benefits of avoided mortality are US$ 50-380 per tonne of CO2, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future

    HETDEX pilot survey for emission-line galaxies - I. Survey design, performance, and catalog

    Get PDF
    We present a catalog of emission-line galaxies selected solely by their emission-line fluxes using a wide-field integral field spectrograph. This work is partially motivated as a pilot survey for the upcoming Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). We describe the observations, reductions, detections, redshift classifications, line fluxes, and counterpart information for 397 emission-line galaxies detected over 169 sq.arcmin with a 3500-5800 Ang. bandpass under 5 Ang. full-width-half-maximum (FWHM) spectral resolution. The survey's best sensitivity for unresolved objects under photometric conditions is between 4-20 E-17 erg/s/sq.cm depending on the wavelength, and Ly-alpha luminosities between 3-6 E42 erg/s are detectable. This survey method complements narrowband and color-selection techniques in the search for high redshift galaxies with its different selection properties and large volume probed. The four survey fields within the COSMOS, GOODS-N, MUNICS, and XMM-LSS areas are rich with existing, complementary data. We find 104 galaxies via their high redshift Ly-alpha emission at 1.9<z<3.8, and the majority of the remainder objects are low redshift [OII]3727 emitters at z<0.56. The classification between low and high redshift objects depends on rest frame equivalent width, as well as other indicators, where available. Based on matches to X-ray catalogs, the active galactic nuclei (AGN) fraction amongst the Ly-alpha emitters (LAEs) is 6%. We also analyze the survey's completeness and contamination properties through simulations. We find five high-z, highly-significant, resolved objects with full-width-half-maximum sizes >44 sq.arcsec which appear to be extended Ly-alpha nebulae. We also find three high-z objects with rest frame Ly-alpha equivalent widths above the level believed to be achievable with normal star formation, EW(rest)>240 Ang.Comment: 45 pages, 36 figures, 5 tables, submitted to ApJ
    corecore