22 research outputs found

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Improvement of Chemical Composition of Tisochrysis lutea Grown Mixotrophically under Nitrogen Depletion towards Biodiesel Production

    No full text
    In the present study, the marine microalga Tisochrysis lutea was cultivated mixotrophically in F2 growth medium with sodium acetate as exogenous carbon source. The medium was composed of different concentrations of nitrogen to determine the impact of nitrogen depletion on cellular growth and chemical composition. Nitrogen depletion led to severely decreased growth and protein content. However, mild nitrogen depletion (0.22 mM NaNO3) led to maximum lipid yield. The fatty acid methyl ester profile also showed increased unsaturation as the nitrogen content decreased. Growth in nitrogen-free medium increased the proportions of mono- and poly-unsaturated fatty acids, while the proportion of saturated fatty acids decreased. Growth under all tested nitrogen levels showed undetectable fatty acids with ≥4 double bonds, indicating these fatty acids had oxidative stability. In addition, all tested nitrogen concentrations led to specific gravity, kinematic viscosity, iodine value, and cetane number that meet the standards for Europe and the U.S.A. However, growth in the presence of nitrogen deficiency enhanced the higher heating value of the resulting biodiesel, a clear advantage from the perspective of energy efficiency. Thus, mixotrophic cultivation of T. lutea with nitrogen limitation provides a promising approach to achieve high lipid productivity and production of high-quality biodiesel

    Phenol phycoremediation by Haematococcus pluvialis coupled with enhanced astaxanthin and lipid production under rac-GR24 supplementation for enhanced biodiesel production

    No full text
    The present study evaluated the impact of rac-GR24 on biomass and astaxanthin production under phenol stress coupled with biodiesel recovery from Haematococcus pluvialis. Phenol supplementation showed negative impact on growth, where the lowest biomass productivity of 0.027 g L-1 day−1 was recorded at 10 µM phenol, while 0.4 µM rac-GR24 supplementation showed the highest recorded biomass productivity of 0.063 g L-1 day−1. Coupling 0.4 µM rac-GR24 at different phenol concentrations confirmed the potential of rac-GR24 to mitigate the toxic effect of phenol by enhancing yield of PSII yield, RuBISCo activity, and antioxidant efficiency, which resulted in improved phenol phycoremediation efficiency. In addition, results suggested a synergistic action by rac-GR24 supplementation under phenol treatment where rac-GR24 enhanced lipid accumulation, while phenol enhanced astaxanthin production. Dual supplementation of rac-GR24 and phenol showed the highest recorded FAMEs content, which was 32.6% higher than the control, with improved biodiesel quality. The suggested approach could enhance the economic feasibility of triple-purpose application of microalgae in wastewater treatment, astaxanthin recovery, and biodiesel production

    Harnessing waste glycerol to mitigate salinity constraints in freshwater microalgae cultivation for enhanced biodiesel recovery

    No full text
    The current study investigated the synergistic effect of waste glycerol and salinity on Scenedesmus obliquus cultivation for enhanced biomass and biodiesel production. Optimal glycerol concentration was identified at 0.08 M supplementation, resulting in 23.1 % significant increase in biomass productivity. However, higher glycerol concentrations resulted in growth retardation. Salinity of +200 % NaCl showed positive impact on the growth, with the highest recorded dry weight of 1.76 g/L and biomass productivity of 0.206 g/L.day. However, further increases in salinity resulted in 53.4 % reduction in biomass yield at +800 % NaCl compared to +200 % NaCl. The combined treatment of the optimum glycerol concentration at different salinities (Glyc + Salin) showed superior growth performance up to +600 % NaCl, which confirmed mitigation of salinity inhibitory effects. Glyc + Salin exhibited the highest recorded nitrogen and phosphorus removal efficiencies (98.1 % and 96.6 %, respectively at day 8), dry weight (2.02 g/L), and biomass productivity (0.231 g/L.day). Notably, lipid content increased to 240.4 mg/g dw, and lipid productivity reached 56.0 mg/L.day, representing 76.1 % improvement over the control. Biodiesel characteristics, including cetane numbers and iodine values, showed also improvement, confirming the potential of Glyc + Salin for sustainable microalgal cultivation and biodiesel production

    Effect of Phytohormones Supplementation under Nitrogen Depletion on Biomass and Lipid Production of Nannochloropsis oceanica for Integrated Application in Nutrition and Biodiesel

    No full text
    Economic viability of biodiesel production relies mainly on the productivity of biomass and microalgal lipids. In addition, production of omega fatty acids is favorable for human nutrition. Thus, enhancement of lipid accumulation with high proportion of omega fatty acids could help the dual use of microalgal lipids in human nutrition and biodiesel production through biorefinery. In that context, phytohormones have been identified as a promising factor to increase biomass and lipids production. However, nitrogen limitation has been discussed as a potential tool for lipid accumulation in microalgae, which results in simultaneous growth retardation. The present study aims to investigate the combined effect of N-depletion and 3-Indoleacetic acid (IAA) supplementation on lipid accumulation of the marine eustigmatophyte Nannochloropsis oceanica as one of the promising microalgae for omega fatty acids production. The study confirmed that N-starvation stimulates the lipid content of N. oceanica. IAA enhanced both growth and lipid accumulation due to enhancement of pigments biosynthesis. Therefore, combination effect of IAA and nitrogen depletion showed gradual increase in the dry weight compared to the control. Lipid analysis showed lower quantity of saturated fatty acids (SFA, 26.25%) than the sum of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). Under N-depletion, SFA decreased by 12.98% compared to the control, which recorded much reduction by increasing of IAA concentration. Reduction of SFA was in favor of PUFA, mainly omega-6 and omega-3 fatty acids which increased significantly due to IAA combined with N-depletion. Thus, the present study suggests a biorefinery approach for lipids extracted from N. oceanica for dual application in nutrition followed by biodiesel production

    Construction of a novel vector for the nuclear transformation of the unicellular green alga Chlamydomonas reinhardtii and its stable expression

    No full text
    Plasmid pBI221aadAGUS which carried both of GUS (β-glucuronidase) and aadA (aminoglyoside transferase) genes besides of the 35S cauliflower mosaic virus promoter was constructed and used for stable nuclear transformation of Chlamydomonas reinhardtii. The vector was transformed into the alga by particle gun bombardment and two positive colonies were selected on spectinomycin–containing medium. The restriction analysis of the DNA of the positive colonies showed that aadA was inserted in two orientations. The presence of introduced genes in the transformed colonies was confirmed by (PCR) using primers specific to GUS and aadA genes. The expression of aadA and GUS genes was revealed in all colonies that were grown on spectinomycin in liquid culture for 3–4 generations. The usefulness of this vector, differing in the orientation of the aadA cassette, was manisfested by transforming C. reinhardtii to spectinomycin resistance in the stable expression. This constructed plasmid-based expression vector system would help to unravel the functions of various genes in the green alga

    Response of Pseudokirchneriella subcapitata in Free and Alginate Immobilized Cells to Heavy Metals Toxicity

    No full text
    Effects of 12 heavy metals on growth of free and alginate-immobilized cells of the alga Pseudokirchneriella subcapitata were investigated. The tested metals ions include Al, As, Cd, Co, Cr, Cu, Hg, Se, Ni, Pb, Sr, and Zn. Toxicity values (EC50) were calculated by graphical interpolation from dose-response curves. The highest to the lowest toxic metals are in the order Cd > Co > Hg > Cu > Ni > Zn > Cr > Al > Se > As > Pb > Sr. The lowest metal concentration (mg L−1) inhibiting 50% (EC50) of algal growth of free and immobilized (values in parentheses) algal cells were, 0.018 (0.09) for Cd, 0.03 (0.06) for Co, 0.039 (0.06) for Hg, 0.048 (0.050) for Cu, 0.055 (0.3) for Ni, 0.08 (0.1) for Zn, 0.2 (0.3) for Cr, 0.75 (1.8) for Al, 1.2 (1.4) for Se, 3.0 (4.0) for As, 3.3 (5.0) for Pb, and 160 (180) for Sr. Free and immobilized cultures showed similar responses to Cu and Se. The free cells were more sensitive than the immobilized ones. Accordingly, the toxicity (EC50) of heavy metals derived only form immobilized algal cells might by questionable. The study suggests that batteries of alginate-immobilized algae can efficiently replace free algae for the bio-removal of heavy metals

    Biomass production and biochemical composition of Chlorella vulgaris grown in Net-House Photobioreactor (NHPBR) using sugarcane press mud waste

    No full text
    The present Net-House Photobioreactor (NHPBR), which has a final capacity of 500 liters, was developed for the purpose of cultivating the Chlorella vulgaris by employing vinasse waste as a source of organic carbon and certain minerals in an effort to lower the cost of production. The growth unit consisted of one reservoir tank carrying 4 Plexi-glass ponds. For each plate, growth and biochemical composition were routinely evaluated to assess the precipitation and growth. Our data revealed no differences in the biomass and chemical constituents in the running algal slurry. However, differences were observed in the precipitated algal biomass for each plate, with the reservoir (CR) and the lower plate (P1) forming the greatest precipitation in terms of dry weight and mat thickness, respectively. The biochemical composition of the harvested biomass was 51.0% crude protein, 13.4% total carbohydrates, 12.1% lipids, and 7.2% ash

    The relationship between addiction to smartphone usage and depression among adults: a cross sectional study

    No full text
    Abstract Background Addiction to smartphone usage is a common worldwide problem among adults, which might negatively affect their wellbeing. This study investigated the prevalence and factors associated with smartphone addiction and depression among a Middle Eastern population. Methods This cross-sectional study was conducted in 2017 using a web-based questionnaire distributed via social media. Responses to the Smartphone Addiction Scale - Short version (10-items) were rated on a 6-point Likert scale, and their percentage mean score (PMS) was commuted. Responses to Beck’s Depression Inventory (20-items) were summated (range 0–60); their mean score (MS) was commuted and categorized. Higher scores indicated higher levels of addiction and depression. Factors associated with these outcomes were identified using descriptive and regression analyses. Statistical significance was set at P < 0.05. Results Complete questionnaires were 935/1120 (83.5%), of which 619 (66.2%) were females and 316 (33.8%) were males. The mean ± standard deviation of their age was 31.7 ± 11  years. Majority of participants obtained university education 766 (81.9%), while 169 (18.1%) had school education. The PMS of addiction was 50.2 ± 20.3, and MS of depression was 13.6 ± 10.0. A significant positive linear relationship was present between smart phone addiction and depression (y = 39.2 + 0.8×; P < 0.001). Significantly higher smartphone addiction scores were associated with younger age users, (β = − 0.203, adj. P = 0.004). Factors associated with higher depression scores were school educated users (β = − 2.03, adj. P = 0.01) compared to the university educated group and users with higher smart phone addiction scores (β =0.194, adj. P < 0.001). Conclusions The positive correlation between smartphone addiction and depression is alarming. Reasonable usage of smart phones is advised, especially among younger adults and less educated users who could be at higher risk of depression
    corecore