55 research outputs found

    Extension of the universal force field for metal–organic frameworks

    Get PDF
    We have extended the Universal Force Field for Metal-Organic Frameworks (UFF4MOF) to cover all moieties present in the most extensive framework library to date, i.e. the Computation-Ready Experimental(CoRE) database (Chem. Mater. 26, 6185 (2014)). Thus, we have extended the parameters to include the fourth and fifth row transition metals, lanthanides and an additional atom type for Sulphur, while the parameters of original UFF and of UFF4MOF are not modified. Employing the new parameters signicantly enlarges the number of structures that may be subjected to a UFF calculation, i.e. more than doubling accessible MOFs of the CoRE structures and thus reaching over 99% of CoRE structure coverage. In turn, 95% of optimized cell parameters are within 10% of their experimental values. We contend these parameters will be most useful for the generation and rapid prototyping of hypothetical MOF structures from SBU databases

    Highlights from the Faraday discussion on new directions in porous crystalline materials, Edinburgh, UK, June 2017

    Get PDF
    A lively discussion on new directions in porous crystalline materials took place in June 2017, with the beautiful city of Edinburgh as a backdrop, in the context of the unique Faraday Discussions format. Here, 5 minute presentations were given on papers which have been submitted in advance of the conference, with copious time allocated for in-depth discussion of the work presented. Professor Mircea Dincă (MIT), chair of the scientific committee, opened the conference by welcoming the many different nationalities attending, and outlining the format of discussions
    • 

    corecore