1,155 research outputs found

    On Hexagonal Structures in Higher Dimensional Theories

    Full text link
    We analyze the geometrical background under which many Lie groups relevant to particle physics are endowed with a (possibly multiple) hexagonal structure. There are several groups appearing, either as special holonomy groups on the compactification process from higher dimensions, or as dynamical string gauge groups; this includes groups like SU(2),SU(3), G_2, Spin(7), SO(8) as well as E_8 and SO(32). We emphasize also the relation of these hexagonal structures with the octonion division algebra, as we expect as well eventually some role for octonions in the interpretation of symmetries in High Energy Physics.Comment: 9 pages, Latex, 3 figures. Accepted for publication in International Journal of Theoretical Physic

    Dynamical Mean-Field Theory of Electron-Phonon Interactions in Correlated Systems: Application to Isotope Effects on Electronic Properties

    Full text link
    We use a recently developed formalism (combining an adiabatic expansion and dynamical mean-field theory) to obtain expressions for isotope effects on electronic properties in correlated systems. As an example we calculate the isotope effect on electron effective mass for the Holstein model as a function of electron-phonon interaction strength and doping. Our systematic expansion generates diagrams neglected in previous studies, which turn out to give the dominant contributions. The isotope effect is small unless the system is near a lattice instability. We compare this to experiment.Comment: 6 pages, 4 figures; added discussion of isotope effect away from half fillin

    Forward and midrapidity like-particle ratios from p+p collisions at sqrt(s)=200 GeV

    Get PDF
    We present a measurement of pi-\pi+, K-/K+ and pbar/p from p+p collisions at sqrt(s) = 20 0GeV over the rapidity range 0<y<3.4. For pT < 2.0 GeV/c we see no significant transverse momentum dependence of the ratios. All three ratios are independent of rapidity for y ~< 1.5 and then steadily decline from y ~ 1.5 to y ~ 3. The pi-\pi+ ratio is below unity for y > 2.0. The pbar/p ratio is very similar for p+p and 20% central Au+Au collisions at all rapidities. In the fragmentation region the three ratios seem to be independent of beam energy when viewed from the rest frame of one of the protons. Theoretical models based on quark-diquark breaking mechanisms overestimate the pbar/p ratio up to y ~< 3. Including additional mechanisms for baryon number transport such as baryon junctions leads to a better description of the data.Comment: 15 pages, 4 figures, uses elsart.sty. Changes to references and discussion based on referee comments, resubmitted to Phys. Lett.

    High Temperature Electron Localization in dense He Gas

    Get PDF
    We report new accurate mesasurements of the mobility of excess electrons in high density Helium gas in extended ranges of temperature [(26T77)K][(26\leq T\leq 77) K ] and density [(0.05N12.0)atomsnm3][ (0.05\leq N\leq 12.0) {atoms} \cdot {nm}^{-3}] to ascertain the effect of temperature on the formation and dynamics of localized electron states. The main result of the experiment is that the formation of localized states essentially depends on the relative balance of fluid dilation energy, repulsive electron-atom interaction energy, and thermal energy. As a consequence, the onset of localization depends on the medium disorder through gas temperature and density. It appears that the transition from delocalized to localized states shifts to larger densities as the temperature is increased. This behavior can be understood in terms of a simple model of electron self-trapping in a spherically symmetric square well.Comment: 23 pages, 13 figure

    an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT

    Get PDF
    © Copyright owned by the author(s). MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities

    Secure Mobile Support of Independent Sales Agencies

    Get PDF
    Sales agents depend on mobile support systems for their daily work. Independent sales agencies, however, are not able to facilitate this kind of mobile support on their own due to their small size and lack of the necessary funds. Since their processes correlate with confidential information and include the initiation and alteration of legally binding transactions they have a high need for security. In this contribution we first propose an IT-artifact consisting of a service platform that supports multi-vendor sales processes based on previous work. We then analyze use cases of sales representatives of independent sales agencies using this system and derive their security requirements. We then propose a security extension to the IT-artifact and evaluate this extension by comparing it to existing solutions. Our results show that the proposed artifact extension provides a more convenient and secure solution than already existing approaches

    VLA Imaging of H i-bearing Ultra-Diffuse Galaxies from the ALFALFA Survey

    Get PDF
    Ultra-diffuse galaxies have generated significant interest due to their large optical extents and low optical surface brightnesses, which challenge galaxy formation models. Here we present resolved synthesis observations of 12 H i-bearing ultra-diffuse galaxies (HUDs) from the Karl G. Jansky Very Large Array (VLA), as well as deep optical imaging from the WIYN 3.5-meter telescope at Kitt Peak National Observatory. We present the data processing and images, including total intensity H i maps and H i velocity fields. The HUDs show ordered gas distributions and evidence of rotation, important prerequisites for the detailed kinematic models in Mancera Pi˜na et al. (2019b). We compare the H i and stellar alignment and extent, and find the H i extends beyond the already extended stellar component and that the H i disk is often misaligned with respect to the stellar one, emphasizing the importance of caution when approaching inclination measurements for these extreme sources. We explore the H i mass-diameter scaling relation, and find that although the HUDs have diffuse stellar populations, they fall along the relation, with typical global H i surface densities. This resolved sample forms an important basis for more detailed study of the H i distribution in this extreme extragalactic population

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV

    Get PDF
    We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let
    corecore