39 research outputs found

    Toward Raman subcellular imaging of endothelial dysfunction

    Get PDF
    Multiple diseases are at some point associated with altered endothelial function, and endothelial dysfunction (ED) contributes to their pathophysiology. Biochemical changes of the dysfunctional endothelium are linked to various cellular organelles, including the mitochondria, endoplasmic reticulum, and nucleus, so organelle-specific insight is needed for better understanding of endothelial pathobiology. Raman imaging, which combines chemical specificity with microscopic resolution, has proved to be useful in detecting biochemical changes in ED at the cellular level. However, the detection of spectroscopic markers associated with specific cell organelles, while desirable, cannot easily be achieved by Raman imaging without labeling. This critical review summarizes the current advances in Raman-based analysis of ED, with a focus on a new approach involving molecular Raman reporters that could facilitate the study of biochemical changes in cellular organelles. Finally, imaging techniques based on both conventional spontaneous Raman scattering and the emerging technique of stimulated Raman scattering are discussed

    Labeled vs. label-free Raman imaging of lipids in endothelial cells of various origins

    Get PDF
    Abnormalities in the composition, quantity or size of lipid droplets in endothelial cells are recognized as one of the markers of endothelial dysfunction. In this study, we assess a new Raman probe for lipids, astaxanthin, in healthy and inflamed endothelium of the heart, aorta and brain, suggesting its use as a universal probe for studying cellular lipids using Raman spectroscopy with laser power 10 times lower than the one needed for label-free detection

    Raman-based spectrophenotyping of the most important cells of the immune system

    Get PDF
    INTRODUCTION: Human peripheral blood mononuclear cells (PBMCs) are a heterogeneous population of cells that includes T and B lymphocytes. The total number of lymphocytes and their percentage in the blood can be a marker for the diagnosis of several human diseases. Currently, cytometric methods are widely used to distinguish subtypes of leukocytes and quantify their number. These techniques use cell immunophenotyping, which is limited by the number of fluorochrome-labeled antibodies that can be applied simultaneously. OBJECTIVE: B and T lymphocytes were isolated from peripheral blood obtained from healthy human donors. METHODS: The immunomagnetic negative selection was used for the enrichment of B and T cells fractions, and their purity was assessed by flow cytometry. Isolated cells were fixed with 0.5% glutaraldehyde and measured using confocal Raman imaging. K-means cluster analysis, principal component analysis and partial least squares discriminant methods were applied for the identification of spectroscopic markers to distinguish B and T cells. HPLC was the reference method for identifying carotene in T cells. RESULTS: Reliable discrimination between T and B lymphocytes based on their spectral profile has been demonstrated using label-free Raman imaging and chemometric analysis. The presence of carotene in T lymphocytes (in addition to the previously reported in plasma) was confirmed and for the first time unequivocally identified as β-carotene. In addition, the molecular features of the lymphocytes nuclei were found to support the discriminant analysis. It has been shown that although the presence of carotenoids in T cells depends on individual donor variability, the reliable differentiation between lymphocytes is possible based on Raman spectra collected from individual cells. CONCLUSIONS: This proves the potential of Raman spectroscopy in clinical diagnostics to automatically differentiate between cells that are an important component of our immune system

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore