190 research outputs found

    The email-diary: a promising research tool for the 21st century?

    Get PDF
    The global research community has identified that, as society becomes ever more mobile and 24/7-oriented, data collection methods that reflect the day-to-day experiences of its participants need to be developed. This article reviews the success and issues of using a solicited email-diary, developed to investigate the impact on commuters of London hosting the 2012 Olympic Games. Research on the effectiveness of diaries as a method of data collection is limited, while there appears to be no analysis using email as a method of soliciting diary responses. The article identifies the research opportunities for an email-diary and the solutions it provides to a number of the problems and limitations experienced with a traditional pen-and-paper diary. </jats:p

    Structural biology with carbon nanotube AFM probes

    Get PDF
    Carbon nanotubes represent ideal probes for high-resolution structural and chemical imaging of biomolecules with atomic force microscopy. Recent advances in fabrication of carbon nanotube probes with sub-nanometer radii promise to yield unique insights into the structure, dynamics and function of biological macromolecules and complexes

    Covalently Functionalized Nanotubes as Nanometer-Sized Probes in Chemistry and Biology

    Get PDF
    Carbon nanotubes combine a range of properties that make them well suited for use as probe tips in applications such as atomic force microscopy (AFM)1, 2, 3. Their high aspect ratio, for example, opens up the possibility of probing the deep crevices4 that occur in microelectronic circuits, and the small effective radius of nanotube tips significantly improves the lateral resolution beyond what can be achieved using commercial silicon tips5. Another characteristic feature of nanotubes is their ability to buckle elastically4, 6, which makes them very robust while limiting the maximum force that is applied to delicate organic and biological samples. Earlier investigations into the performance of nanotubes as scanning probe microscopy tips have focused on topographical imaging, but a potentially more significant issue is the question of whether nanotubes can be modified to create probes that can sense and manipulate matter at the molecular level7. Here we demonstrate that nanotube tips with the capability of chemical and biological discrimination can be created with acidic functionality and by coupling basic or hydrophobic functionalities or biomolecular probes to the carboxyl groups that are present at the open tip ends. We have used these modified nanotubes as AFM tips to titrate the acid and base groups, to image patterned samples based on molecular interactions, and to measure the binding force between single protein ligand pairs. As carboxyl groups are readily derivatized by a variety of reactions8, the preparation of a wide range of functionalized nanotube tips should be possible, thus creating molecular probes with potential applications in many areas of chemistry and biology.Chemistry and Chemical Biolog

    Covalently Functionalized Nanotubes as Nanometer-Sized Probes in Chemistry and Biology

    Get PDF
    Carbon nanotubes combine a range of properties that make them well suited for use as probe tips in applications such as atomic force microscopy (AFM)1, 2, 3. Their high aspect ratio, for example, opens up the possibility of probing the deep crevices4 that occur in microelectronic circuits, and the small effective radius of nanotube tips significantly improves the lateral resolution beyond what can be achieved using commercial silicon tips5. Another characteristic feature of nanotubes is their ability to buckle elastically4, 6, which makes them very robust while limiting the maximum force that is applied to delicate organic and biological samples. Earlier investigations into the performance of nanotubes as scanning probe microscopy tips have focused on topographical imaging, but a potentially more significant issue is the question of whether nanotubes can be modified to create probes that can sense and manipulate matter at the molecular level7. Here we demonstrate that nanotube tips with the capability of chemical and biological discrimination can be created with acidic functionality and by coupling basic or hydrophobic functionalities or biomolecular probes to the carboxyl groups that are present at the open tip ends. We have used these modified nanotubes as AFM tips to titrate the acid and base groups, to image patterned samples based on molecular interactions, and to measure the binding force between single protein–ligand pairs. As carboxyl groups are readily derivatized by a variety of reactions8, the preparation of a wide range of functionalized nanotube tips should be possible, thus creating molecular probes with potential applications in many areas of chemistry and biology

    High-Resolution 3D Printing Fabrication of a Microfluidic Platform for Blood Plasma Separation

    Get PDF
    Additive manufacturing technology is an emerging method for rapid prototyping, which enables the creation of complex geometries by one-step fabrication processes through a layer-by-layer approach. The simplified fabrication achieved with this methodology opens the way towards a more efficient industrial production, with applications in a great number of fields such as biomedical devices. In biomedicine, blood is the gold-standard biofluid for clinical analysis. However, blood cells generate analytical interferences in many test procedures; hence, it is important to separate plasma from blood cells before analytical testing of blood samples. In this research, a custom-made resin formulation combined with a high-resolution 3D printing methodology were used to achieve a methodology for the fast prototype optimization of an operative plasma separation modular device. Through an iterative process, 17 different prototypes were designed and fabricated with printing times ranging from 5 to 12 min. The final device was evaluated through colorimetric analysis, validating this fabrication approach for the qualitative assessment of plasma separation from whole blood. The 3D printing method used here demonstrates the great contribution that this microfluidic technology will bring to the plasma separation biomedical devices market.This research was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 778001 (DNASurf), “Ministerio de Ciencia y Educación de España” under grant PID2020-120313GB-I00/AIE/10.13039/501100011033, the Basque Government (Grant IT1271-19) and the US National Institutes of Health (R01 EB027096 and R15 GM123405-02)

    What Should Be Done To Tackle Ghostwriting in the Medical Literature?

    Get PDF
    Background to the debate: Ghostwriting occurs when someone makes substantial contributions to a manuscript without attribution or disclosure. It is considered bad publication practice in the medical sciences, and some argue it is scientific misconduct. At its extreme, medical ghostwriting involves pharmaceutical companies hiring professional writers to produce papers promoting their products but hiding those contributions and instead naming academic physicians or scientists as the authors. To improve transparency, many editors' associations and journals allow professional medical writers to contribute to the writing of papers without being listed as authors provided their role is acknowledged. This debate examines how best to tackle ghostwriting in the medical literature from the perspectives of a researcher, an editor, and the professional medical writer
    • …
    corecore