9,775 research outputs found
Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide.
Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route
Nonlinear interaction between electromagnetic fields at high temperature
The electron-positron `box' diagram produces an effective action which is
fourth order in the electromagnetic field. We examine the behaviour of this
effective action at high-temperature (in analytically continued imaginary-time
thermal perturbation theory). We argue that there is a finite, nonzero limit as
(where is the temperature). We calculate this limit
in the nonrelativistic static case, and in the long-wavelength limit. We also
briefly discuss the self-energy in 2-dimensional QED, which is similar in some
respects.Comment: 13 pages, DAMTP 94/3
Testbeam studies of pre-prototype silicon strip sensors for the LHCb UT upgrade project
The LHCb experiment is preparing for a major upgrade in 2018-2019. One of the
key components in the upgrade is a new silicon tracker situated upstream of the
analysis magnet of the experiment. The Upstream Tracker (UT) will consist of
four planes of silicon strip detectors, with each plane covering an area of
about 2 m. An important consideration of these detectors is their
performance after they have been exposed to a large radiation dose. In this
article we present test beam results of pre-prototype n-in-p and p-in-n sensors
that have been irradiated with fluences up to
cm.Comment: 25 pages, 20 figure
Size-selective nanoparticle growth on few-layer graphene films
We observe that gold atoms deposited by physical vapor deposition onto few
layer graphenes condense upon annealing to form nanoparticles with an average
diameter that is determined by the graphene film thickness. The data are well
described by a theoretical model in which the electrostatic interactions
arising from charge transfer between the graphene and the gold particle limit
the size of the growing nanoparticles. The model predicts a nanoparticle size
distribution characterized by a mean diameter D that follows a scaling law D
proportional to m^(1/3), where m is the number of carbon layers in the few
layer graphene film.Comment: 15 pages, 4 figure
A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis.
The search for effective treatments for obesity and its comorbidities is of prime importance. We previously identified IKK-ε and TBK1 as promising therapeutic targets for the treatment of obesity and associated insulin resistance. Here we show that acute inhibition of IKK-ε and TBK1 with amlexanox treatment increases cAMP levels in subcutaneous adipose depots of obese mice, promoting the synthesis and secretion of the cytokine IL-6 from adipocytes and preadipocytes, but not from macrophages. IL-6, in turn, stimulates the phosphorylation of hepatic Stat3 to suppress expression of genes involved in gluconeogenesis, in the process improving glucose handling in obese mice. Preliminary data in a small cohort of obese patients show a similar association. These data support an important role for a subcutaneous adipose tissue-liver axis in mediating the acute metabolic benefits of amlexanox on glucose metabolism, and point to a new therapeutic pathway for type 2 diabetes
Holography, Pade Approximants and Deconstruction
We investigate the relation between holographic calculations in 5D and the
Migdal approach to correlation functions in large N theories. The latter
employs Pade approximation to extrapolate short distance correlation functions
to large distances. We make the Migdal/5D relation more precise by quantifying
the correspondence between Pade approximation and the background and boundary
conditions in 5D. We also establish a connection between the Migdal approach
and the models of deconstructed dimensions.Comment: 28 page
Diffusion NMR characterization of catalytic silica supports:a tortuous path
Mesoporous silicas have found widespread application within the field of heterogeneous catalysis. Acid functionalization of such materials, through one-pot or postsynthetic grafting of sulfonic acid groups, imparts activity for fatty acid esterification, with the studious choice of pore geometry facilitating significant rate enhancements. Diffusion NMR has been utilized for the first time to characterize the structure of mesoporous silicas through the transport behavior of systematically related carboxylic acids confined within their mesopore networks. A reduced diffusion coefficient is obtained for species constrained within the 3-dimensional interconnected pores of KIT-6 relative to the 2-dimensional noninterconnected pore channels of SBA-15. The effective tortuosity of both porous silicas increases with the acid chain length, with the diffusion behavior of long-chain acids dominated by the alkyl chain and silica architecture. Carboxylic acid diffusion within these two pore networks is unlikely to be rate-limiting in catalytic esterification over sulfonic acid silica analogues. Physicochemical insights from diffusion NMR will aid the future design of optimal silica architectures for catalytic applications
Assessment of the cortisol awakening response: expert consensus guidelines
The cortisol awakening response (CAR), the marked increase in cortisol secretion over the first 30–45 min after morning awakening, has been related to a wide range of psychosocial, physical and mental health parameters, making it a key variable for psychoneuroendocrinological research. The CAR is typically assessed from self-collection of saliva samples within the domestic setting. While this confers ecological validity, it lacks direct researcher oversight which can be problematic as the validity of CAR measurement critically relies on participants closely following a timed sampling schedule, beginning with the moment of awakening. Researchers assessing the CAR thus need to take important steps to maximize and monitor saliva sampling accuracy as well as consider a range of other relevant methodological factors. To promote best practice of future research in this field, the International Society of Psychoneuroendocrinology initiated an expert panel charged with (i) summarizing relevant evidence and collective experience on methodological factors affecting CAR assessment and (ii) formulating clear consensus guidelines for future research. The present report summarizes the results of this undertaking. Consensus guidelines are presented on central aspects of CAR assessment, including objective control of sampling accuracy/adherence, participant instructions, covariate accounting, sampling protocols, quantification strategies as well as reporting and interpreting of CAR data. Meeting these methodological standards in future research will create more powerful research designs, thus yielding more reliable and reproducible results and helping to further advance understanding in this evolving field of research
Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes
OBJECTIVE:
Abnormally elevated proinsulin secretion has been reported in type 2 and early type 1 diabetes when significant C-peptide is present. We questioned whether individuals with long-standing type 1 diabetes and low or absent C-peptide secretory capacity retained the ability to make proinsulin.
RESEARCH DESIGN AND METHODS:
C-peptide and proinsulin were measured in fasting and stimulated sera from 319 subjects with long-standing type 1 diabetes (≥3 years) and 12 control subjects without diabetes. We considered three categories of stimulated C-peptide: 1) C-peptide positive, with high stimulated values ≥0.2 nmol/L; 2) C-peptide positive, with low stimulated values ≥0.017 but <0.2 nmol/L; and 3) C-peptide <0.017 nmol/L. Longitudinal samples were analyzed from C-peptide-positive subjects with diabetes after 1, 2, and 4 years.
RESULTS:
Of individuals with long-standing type 1 diabetes, 95.9% had detectable serum proinsulin (>3.1 pmol/L), while 89.9% of participants with stimulated C-peptide values below the limit of detection (<0.017 nmol/L; n = 99) had measurable proinsulin. Proinsulin levels remained stable over 4 years of follow-up, while C-peptide decreased slowly during longitudinal analysis. Correlations between proinsulin with C-peptide and mixed-meal stimulation of proinsulin were found only in subjects with high stimulated C-peptide values (≥0.2 nmol/L). Specifically, increases in proinsulin with mixed-meal stimulation were present only in the group with high stimulated C-peptide values, with no increases observed among subjects with low or undetectable (<0.017 nmol/L) residual C-peptide.
CONCLUSIONS:
In individuals with long-duration type 1 diabetes, the ability to secrete proinsulin persists, even in those with undetectable serum C-peptide
- …