61 research outputs found
Structural capacity assessment of corroded RC bridge piers
A new numerical model is developed that enables simulation of the nonlinear flexural response of reinforced concrete (RC) components and sections with corroded reinforcement. The numerical model employs a displacement based beam-column element using the classical Hermitian shape function. The material nonlinearity is accounted for by updating element stiffness matrices using the moment-curvature response of the element section considering uniform stiffness over the element. The cover concrete strength is adjusted to account for corrosion induced cover cracking and the core confined concrete strength and ductility are adjusted to account for corrosion induced damage to the transverse reinforcement. The numerical model is validated against a bench mark experiment on a corroded RC column subject to lateral cyclic loading. The verified model is then used to explore the impact of corrosion on the inelastic response and the residual capacity of corroded RC sections. The results show that considering the effect of corrosion damage on RC sections changes the failure mode of RC columns
Physical modelling of the seismic response of gas pipelines in laterally in homogeneous soil
This paper reports on results from a series of 1-g, reduced-scale, shake table tests of a 216mlong portion of an onshore steel gas transmission pipeline embedded in horizontally layered soil. A set of first-order set of dynamic similitude laws was employed to scale system parameters appropriately. Two sands of different mean grain diameter and bulk density were used to assemble a compound symmetrical test soil consisting of three uniform blocks in a dense-loose-dense configuration. The sandpipe interface friction coefficients were measured at 0.23 and 0.27. Modulated harmonic and recorded ground motions were applied as table excitation. To monitor the detailed longitudinal strain profiles in the model pipe, bare Fiber Bragg Grating cables were deployed. In most cases, the pipe response was predominantly axial while bending became significant at stronger excitations. levels. Strain distributions displayed clear peaks at or near the block interfaces, in accord with numerical predictions, with magnitudes increasing at resonant frequencies and with excitation level. By extension to full-scale, peak axial strain amounted to approximately 10-3, a demand half the yield strain, but not negligible given the low in-situ soil stiffness contrast and soil-pipe frictio
Computational Modelling Strategies for Nonlinear Response Prediction of Corroded Circular RC Bridge Piers
A numerical model is presented that enables simulation of the nonlinear flexural response of corroded reinforced concrete (RC) components. The model employs a force-based nonlinear fibre beam-column element. A new phenomenological uniaxial material model for corroded reinforcing steel is used. This model accounts for the impact of corrosion on buckling strength, post-buckling behaviour and low-cycle fatigue degradation of vertical reinforcement under cyclic loading. The basic material model is validated through comparison of simulated and observed response for uncorroded RC columns. The model is used to explore the impact of corrosion on the inelastic response of corroded RC columns
Nonlinear fiber element modeling of RC bridge piers considering inelastic buckling of reinforcement
An advanced modelling technique is developed to model the nonlinear cyclic response of circular RC columns using fibre-based section discretisation method. A comparison between different reinforcing steel models is made. Through a comprehensive parametric study the influence of inelastic buckling of vertical reinforcement on the cyclic response of circular RC columns is investigated. The results have been compared and validated against a set of experimental datasets. The proposed calibrated model accounts for the influence of inelastic buckling of vertical reinforcement and interaction of stiffness of horizontal ties reinforcement with vertical reinforcement. The model also accounts for the fracture of vertical bars due to low-cycle high-amplitude fatigue degradation. Therefore, this model is able to predict the nonlinear cyclic response of circular RC columns up to complete collapse. The results show that the existing uniaxial material models of reinforcing bars that are calibrated using stress-strain behaviour of isolated bars cannot represent the behaviour of reinforcing bars inside RC columns. Moreover, it is found that the buckling length of vertical reinforcement has a significant influence on the pinching response of RC columns and also reduces the low-cycle fatigue life of buckled reinforcemen
Development of a Low-Cost 6 DOF Brick Tracking System for Use in Advanced Gas-Cooled Reactor Model Tests
This paper presents the design of a low-cost, compact instrumentation system to enable six degree of freedom motion tracking of acetal bricks within an experimental model of a cracked Advanced Gas-Cooled Reactor (AGR) core. The system comprises optical and inertial sensors and capitalises on the advantages offered by data fusion techniques. The optical system tracks LED indicators, allowing a brick to be accurately located even in cluttered images. The LED positions are identified using a geometrical correspondence algorithm, which was optimised to be computationally efficient for shallow movements, and complex camera distortions are corrected using a versatile Incident Ray-Tracking calibration. Then, a Perspective-Ray-based Scaled Orthographic projection with Iteration (PRSOI) algorithm is applied to each LED position to determine the six degree of freedom pose. Results from experiments show that the system achieves a low Root Mean Squared (RMS) error of 0.2296 mm in x, 0.3943 mm in y, and 0.0703 mm in z. Although providing an accurate measurement solution, the optical tracking system has a low sample rate and requires the line of sight to be maintained throughout each test. To increase the robustness, accuracy, and sampling frequency of the system, the optical system can be augmented with an Inertial Measurement Unit (IMU). This paper presents a method to integrate the optical system and IMU data by accurately timestamping data from each set of sensors and aligning the two coordinate axes. Once miniaturised, the developed system will be used to track smaller components within the AGR models that cannot be tracked with current instrumentation, expanding reactor core modelling capabilities
Nonlinear dynamic analysis and seismic fragility assessment of a corrosion damaged integral bridge
Purpose
In this paper the impact of corrosion of reinforcing steel in RC columns on the seismic performance of a multi-span concrete integral bridge is explored. A new constitutive model for corroded reinforcing steel is used. This model simulates the buckling of longitudinal reinforcement under cyclic loading and the impact of corrosion on buckling strength. Cover concrete strength is adjusted to account for corrosion induced damage and core concrete strength and ductility is adjusted to account for corrosion induced damage to transverse reinforcement. This study evaluates the impact which chloride induced corrosion of the reinforced concrete columns on the seismic fragility of the bridge. Fragility curves are developed at a various time intervals over the lifetime. The results of this study show that the bridge fragility increases significantly with corrosion.
Design/methodology/approach
This paper firstly evaluates the impact which chloride induced corrosion of the columns has on bridge fragility. Finally, fragility curves are developed at various time intervals over the lifetime of the bridge. The results of this study show that the bridge fragility increases significantly with corrosion.
Findings
1) It was found that columns dominate the system fragility at all levels of deterioration. Therefore, it highlights the importance of good column design in terms of both seismic detailing and durability for this integral bridge type.
2) In terms of foundation settlement coupled with corrosion, it was found that settlements on the order of the discrete levels adopted for this study increased the system fragility at the slight, moderate and extensive damage states but their impact at the complete damage states is negligible.
3) Ageing considerations are currently neglected in widespread regional risk assessment and loss estimation packages for transport infrastructure. The result of this study provides a methodology that enables bridge managers and owners to employ in seismic risk assessment of existing aging bridges.
Originality/value
The modelling technician developed in this paper considers the impact of detailed corrosion damaged of RC column on nonlinear dynamic response and fragility of a corroded integral bridge under earthquake loading. The current modelling technique is the most comprehensive 3D fibre element model for seismic analysis and risk assessment of corroded bridges.
</jats:sec
- …