31 research outputs found

    Analysis of thermomechanical properties of polymeric materials produced by a 3D printing method

    Get PDF
    A comparative analysis of the thermomechanical properties of semicrystalline and amorphous polymeric materials was carried out. Samples were produced by using a 3D printing technology on the SIGNAL printer - ATMAT. The following polymeric materials were used to make the samples: TPU-thermoplastic polyurethane elastomer, ABS-copolymer acrylonitrile-butadiene-styrene, Nosewood, PET-ethylene terephthalate, PLA-poly (lactic acid). The research included a thermal analysis of the dynamic properties (DMTA) of manufactured materials

    Chemical composition of Abrus precatorius L. seeds

    Get PDF
    Aims: A. precatorius seed powder is traditionally used in Ayurveda, Siddha and Unani medicine. The objective of present work is to describe the oil, starch, protein, polyphenol and mineral composition of A. precatorius seeds. Methodology: Legumes from A. precatorius were collected, and seeds were manually separated. Dried seeds in powder form were employed for the various analyses: solvent extraction was used for elucidation of the oil percentage value; starch content was determined by the enzymatic method; total polyphenol and flavonoid contents were spectrophotometrically analyzed using Folin-Ciocalteu and aluminum chloride as the color developing reagents, respectively; and X-ray fluorescence (XRF) was used for the mineral contents assessment. Results: The seed kernel consisted of stored oil (3.2%), protein (92.0%) and starch (4.8%). The total polyphenol and flavonoid contents were 24710 and 2520 mg/kg (dw). A remarkably high content of polyphenols was observed in the seed coat and the seed pod. P, S and (mainly) K nutrients were hyper-accumulated in the seed kernel. The seeds showed a glass transition at -21°C, two endothermic peaks at 109°C (dehydration and protein unfolding) and at 209°C, and a calorific value (~406 kcal/100 g dw) that exceeded those of Pisum sativum L., Lens culinaris Medik. and other common pulses. Conclusions: The seed kernel from A. precatorius was mainly composed of stored protein, with low oil and starch contents. High contents of polyphenols, K, Mg, Ca and Fe were found in the seeds. Heavy metals were below the safety limits established for human consumption

    Analysis of thermomechanical properties and the influence of machining process on the surface structure of composites manufactured from metal chips with a polymer matrix

    Get PDF
    Nowadays, the dynamic development of the entire market of composite materials is noticeable, which is very often associated with the need to use waste or recycled materials in their production. In the process of producing composites themselves, the easy possibility of shaping their mechanical and thermomechanical properties becomes apparent, which can be a big problem for materials with a homogeneous structure. For the tests, samples made of a combination of acrylic-phenolic resin with fine aluminum and brass chips were used. The tests were performed for composite samples produced by pressing. This paper presents the results of the DMTA method of the conservative modulus and the tangent of mechanical loss angle of the composite, a detailed stereometric analysis of the surface after machining, roughness parameters and volumetric functional parameters were performed. For the tested samples, changes in the values of the conservative modulus and the mechanical loss coefficient were recorded, which indicated significant differences for the composite with brass chips in relation to composites with aluminum chips. In the case of the composite with aluminum chips, slight changes in the conservative modulus were recorded in the glass transition phase and the elastic deformation phase at different frequencies. In contrast, for composites with brass, slight changes were recorded in the entire range of the course of the conservative module as a function of temperature when different excitation frequencies were applied. In relation to the polymer matrix, a significant increase in the value of the conservative modulus of composites was recorded in the entire temperature range of the test. Significant differences were recorded in the study of the surface of composites in the case of using different materials obtained after machining as fillers. The dependences of the amplitude parameters of the surface after machining the sample made of phenolic-acrylic resin prove the poor performance properties of the surface. The use of chips in the composite significantly changed the surface geometry.Web of Science1417art. no. 350

    New Class of Antimicrobial Agents: SBA-15 Silica Containing Anchored Copper Ions

    Get PDF
    The paper is about a new class of antimicrobial functional nanomaterials. Proposed compounds are based on SBA-15 porous silica matrices and contain anchored copper ions. Thanks to the immobilization of functional groups the compounds are safer for environment than commonly used disinfectant agents. We prepared and examined silica based materials containing two concentrations of copper-containing groups: 10 and 5%. For the reference we prepared samples containing free-standing CuO molecules in the structure and checked their antimicrobial properties. Antibacterial effect of considered SBA-15-Cu material was tested on Escherichia coli bacteria. Antimicrobial tests were applied for the pure form of the material and as modifying agents for plastics. The obtained results showed that the sample with lower concentration of active copper-containing groups has stronger antimicrobial properties than the one with higher concentration of copper. Interestingly, silica containing free-standing CuO molecules has no antimicrobial properties. Considering the obtained results, we can conclude that the most probable antimicrobial mechanism in this case is an oxidation stress. When a plastic modifier is applied the material is enriched with bacterial inhibitory properties. It seems that SBA-15 silica containing low concentration of anchored copper ions is promising in terms of its antibacterial property and biomaterial potential for commercial use

    Modeling of Thermal Cycle CI Engine with Multi-Stage Fuel Injection

    Full text link
    This work presents a complete thermal cycle modeling of a four-stroke diesel engine with a three-dimensional simulation program CFD - AVL Fire. The object of the simulation was the S320 Andoria engine. The purpose of the study was to determine the effect of fuel dose distribution on selected parameters of the combustion process. As a result of the modeling, time spatial pressure distributions, rate of pressure increase, heat release rate and NO and soot emission were obtained for 3 injection strategies: no division, one pilot dose and one main dose and two pilot doses and one main dose. It has been found that the use of pilot doses on the one hand reduces engine hardness and lowers NO emissions and on the other hand, increases soot emissions

    Numerical–Experimental Analysis of Polyethylene Pipe Deformation at Different Load Values

    No full text
    Polymer pipes are used in the construction of underground gas, water, and sewage networks. During exploitation, various external forces work on the pipeline, which cause its deformation. In the paper, numerical analysis and experimental investigations of polyethylene pipe deformation at different external load values (500, 1000, 1500, and 2000 N) were performed. The authors measured strains of the lower and upper surface of the pipe during its loading moment using resistance strain gauges, which were located on the pipe at equal intervals. The results obtained from computer simulation and experimental studies were comparable. An innovative element of the research presented in the article is recognition of the impact of the proposed values of the load of polyethylene pipe on the change in its deformation

    Effect of PVP and Polybond Compatibilizers on Dynamic Properties of Polymer Blends Analyzed with DMTA

    No full text
    The properties of the polymer blends depend significantly on the type of the components. That kind of influence is manifested especially in the change of physical properties. The crucial condition for reaching the homogeneity and the properties of a polymer material is its mutual miscibility. Additional agents that make mixing easier are usually applied. They have reactive effect which results in a chemical modification of output polymer along with the change in its chemical structure and the structure of macrochains. In order to achieve this within the confines of the carried research, the polyvinylpyrrolidone (PVP) and polybond has been used. Some results concerning mechanical properties of polypropylene (PP) and polyamide (PA) blends with the addition of PVP and polybond are presented in the paper. In case of mixing PP with PVP, the hydrophobic interactions occur in the created macromolecules with the participation of the hydrocarbon chains. In case of mixing PA with PVP, the PVP solution in PA is created, with strong intermolecular interactions, including the hydrogen ones. The intermolecular interactions occur and they differently influence parameters of the modified materials in the blends on the basis of such polymers. Therefore the aim of the research was to evaluate the influence of the compatibilizers such as PVP and Polybond 3150 on the dynamic properties of PP/PA blends. The analysis of dynamic proprieties of polymer blends was performed with the Dynamic Mechanical Thermal Analysis (DMTA). The mixing of polymers in different proportions with compatibilizers (PVP, Polybond 3150) results in materials of completely different properties in comparison to the base materials. Detailed results concerning response to sinusoidal load in function of temperature and frequency are presented in the paper

    Effect of PVP and Polybond Compatibilizers on Dynamic Properties of Polymer Blends Analyzed with DMTA

    No full text
    The properties of the polymer blends depend significantly on the type of the components. That kind of influence is manifested especially in the change of physical properties. The crucial condition for reaching the homogeneity and the properties of a polymer material is its mutual miscibility. Additional agents that make mixing easier are usually applied. They have reactive effect which results in a chemical modification of output polymer along with the change in its chemical structure and the structure of macrochains. In order to achieve this within the confines of the carried research, the polyvinylpyrrolidone (PVP) and polybond has been used. Some results concerning mechanical properties of polypropylene (PP) and polyamide (PA) blends with the addition of PVP and polybond are presented in the paper. In case of mixing PP with PVP, the hydrophobic interactions occur in the created macromolecules with the participation of the hydrocarbon chains. In case of mixing PA with PVP, the PVP solution in PA is created, with strong intermolecular interactions, including the hydrogen ones. The intermolecular interactions occur and they differently influence parameters of the modified materials in the blends on the basis of such polymers. Therefore the aim of the research was to evaluate the influence of the compatibilizers such as PVP and Polybond 3150 on the dynamic properties of PP/PA blends. The analysis of dynamic proprieties of polymer blends was performed with the Dynamic Mechanical Thermal Analysis (DMTA). The mixing of polymers in different proportions with compatibilizers (PVP, Polybond 3150) results in materials of completely different properties in comparison to the base materials. Detailed results concerning response to sinusoidal load in function of temperature and frequency are presented in the paper

    Recycling of Plastic Waste, with Particular Emphasis on Thermal Methods—Review

    No full text
    The civilization development requires improvement of technologies and satisfaction of people’s needs on the one side, but on the other one it is directly connected with the increasing production of waste. In this paper, the authors dealt with the second of these aspects, reviewing the recycling of plastic waste, which can be processed without changing its chemical structure (mechanical recycling), and with changing its chemical structure (chemical recycling, of which thermal recycling). Mechanical recycling involves shredding the waste in order to obtain recyclate or regranulate that meets specific quality requirements. Chemical recycling consists of the degradation of the material into low-molecular compounds, and it can take place in the processes of hydrolysis, glycolysis, methanolysis by means of chemical solvents, and during thermal processes of hydrocracking, gasification, pyrolysis, combustion, enabling the recovery of gaseous and liquid hydrocarbons foundings in application as a fuel in the energy and cement-lime industry and enabling the recovery of thermal energy contained in plastics. The paper focuses on thermal methods of plastics recycling that become more important due to legal regulations limiting the landfilling of waste. The authors also took up the properties of plastics and their production in European conditions
    corecore