962 research outputs found

    Nonlinear coherent transport of waves in disordered media

    Get PDF
    We present a diagrammatic theory for coherent backscattering from disordered dilute media in the nonlinear regime. The approach is non-perturbative in the strength of the nonlinearity. We show that the coherent backscattering enhancement factor is strongly affected by the nonlinearity, and corroborate these results by numerical simulations. Our theory can be applied to several physical scenarios like scattering of light in nonlinear Kerr media, or propagation of matter waves in disordered potentials.Comment: 4 pages, 3 figure

    The Relationship between Age and Suicidal Thoughts and Attempted Suicide among Prisoners

    Get PDF
    Background Suicide is a major problem across the lifespan, yet rates are highest among middle-aged and older adults; a trend which remains relatively stable across varying sociological settings, including prisons. Despite this understanding, there is limited knowledge on the nature of suicidal thoughts and attempts among older prisoners, especially with respect to how they compare to younger counterparts. The present study aimed to increase insight into the relationship between age and suicidal thoughts and attempted suicide among prisoners, with particular focus on factors that may explain age-based variability. Results Cross-sectional data were drawn from a nationally representative sample of 18,185 prisoners housed within 326 prisons across the United States. In general, analyses revealed that: (a) attempted suicide was more commonly reported among younger prisoners, while suicidal ideation was more commonly reported among older prisoners; (b) the relationship between age and probability of reporting suicidal thoughts and behavior is curvilinear; (c) younger and older prisoners exhibit somewhat differing predictive patterns of suicidal thoughts and behavior (e.g., physical illness is directly associated with suicidal history for younger prisoners, whereas the effect of physical illness on suicidal history for older prisoners is mediated by depression). Conclusions There is evidence to suggest that suicidal thoughts and behavior may manifest differently for younger and older prisoners, with differing patterns of risk. More research is needed on age-based variability in suicidal thoughts and attempted suicide among prisoners, as well as those factors that might explain this variability. Importantly, future research must continue to investigate the nature of suicidal thoughts and behavior among older prisoners

    Transport of Canadian forest fire smoke over the UK as observed by lidar

    Get PDF
    Layers of aerosol at heights between 2 and 11&thinsp;km were observed with Raman lidars in the UK between 23 and 31 May 2016. A network of these lidars, supported by ceilometer observations, is used to map the extent of the aerosol and its optical properties. Space-borne lidar profiles show that the aerosol originated from forest fires over western Canada around 17 May, and indeed the aerosol properties – weak volume depolarisation ( &lt; 5&thinsp;%) and a lidar ratio at 355&thinsp;nm in the range 35–65&thinsp;sr – were consistent with long-range transport of forest fire smoke. The event was unusual in its persistence – the smoke plume was drawn into an atmospheric block that kept it above north-western Europe for 9 days. Lidar observations show how the smoke layers became optically thinner during this period, but the lidar ratio and aerosol depolarisation showed little change. The results demonstrate the value of a dense network of observations for tracking forest fire smoke, and show how the dispersion of smoke in the free troposphere leads to the emergence of discrete thin layers in the far field. They also show how atmospheric blocking can keep a smoke plume in the same geographic area for over a week.</p

    The diminishing importance of nitrogen dioxide emissions from road vehicle exhaust

    Get PDF
    The direct emission of nitrogen dioxide (NO2) from road vehicle exhaust has been an important contributor to near-road ambient concentrations of NO2 in many European cities. Diesel vehicles and their use of emission control technologies such as Diesel Oxidation Catalysts, have dominated the emission of NO2 from road vehicles. In this work, we summarise findings from recent vehicle emission remote sensing measurements in the UK that provide detailed information on the emissions of NO2 and total NOx(NO2 + NO). We show that while new diesel cars and light commercial vehicles are associated with high (typically 30%) proportions of NO2/NOx, the amount of absolute NOx and NO2 emitted by most Euro 6 vehicles has decreased substantially and that absolute emissions of NO2 have been reducing since around 2007. Additionally, we find that the amount of NO2 decreases as the vehicle mileage increases. Taken together, these factors have led to substantial reductions in emissions of NO2 in recent years from light duty diesel vehicles, which has contributed to reduced roadside NO2 concentrations. There is a need however for commonly used emission factor models to account for these changes in emissions of NO2

    Ozone deposition to a coastal sea : Comparison of eddy covariance observations with reactive air-sea exchange models

    Get PDF
    A fast-response (10 Hz) chemiluminescence detector for ozone (O3) was used to determine O3 fluxes using the eddy covariance technique at the Penlee Point Atmospheric Observatory (PPAO) on the south coast of the UK during April and May 2018. The median O3 flux was-0.132 mgm-2 h-1 (0.018 ppbvms-1), corresponding to a deposition velocity of 0.037 cm s-1 (interquartile range 0.017-0.065 cm s-1)-similar to the higher values previously reported for open-ocean flux measurements but not as high as some other coastal results. We demonstrate that a typical single flux observation was above the 2 limit of detection but had considerable uncertainty. The median 2 uncertainty of deposition velocity was 0.031 cm s-1 for each 20 min period, which reduces with the square root of the sample size. Eddy covariance footprint analysis of the site indicates that the flux footprint was predominantly over water (96 %), varying with atmospheric stability and, to a lesser extent, with the tide. At very low wind speeds when the atmosphere was typically unstable, the observed ozone deposition velocity was elevated, most likely because the footprint contracted to include a greater land contribution in these conditions. At moderate to high wind speeds when atmospheric stability was near-neutral, the ozone deposition velocity increased with wind speed and showed a linear dependence with friction velocity. This observed dependence on friction velocity (and therefore also wind speed) is consistent with the predictions from the one-layer model of Fairall et al. (2007), which parameterises the oceanic deposition of ozone from the fundamental conservation equation, accounting for both ocean turbulence and near-surface chemical destruction, while assuming that chemical O3 destruction by iodide is distributed over depth. In contrast to our observations, the deposition velocity predicted by the recently developed two-layer model of Luhar et al. (2018) (which considers iodide reactivity in both layers but with molecular diffusivity dominating over turbulent diffusivity in the first layer) shows no major dependence of deposition velocity on wind speed and underestimates the measured deposition velocities. These results call for further investigation into the mechanisms and control of oceanic O3 deposition

    Sources of non-methane hydrocarbons in surface air in Delhi, India

    Get PDF
    Rapid economic growth and development have exacerbated air quality problems across India, driven by many poorly understood pollution sources and understanding their relative importance remains critical to characterising the key drivers of air pollution. A comprehensive suite of measurements of 90 non-methane hydrocarbons (NMHCs) (C2–C14), including 12 speciated monoterpenes and higher molecular weight monoaromatics, were made at an urban site in Old Delhi during the pre-monsoon (28-May to 05-Jun 2018) and post-monsoon (11 to 27-Oct 2018) seasons using dual-channel gas chromatography (DC-GC-FID) and two-dimensional gas chromatography (GC×GC-FID). Significantly higher mixing ratios of NMHCs were measured during the post-monsoon campaign, with a mean night-time enhancement of around 6. Like with NOx and CO, strong diurnal profiles were observed for all NMHCs, except isoprene, with very high NMHC mixing ratios between 35–1485 ppbv. The sum of mixing ratios of benzene, toluene, ethylbenzene and xylenes (BTEX) routinely exceeded 100 ppbv at night during the post-monsoon period, with a maximum measured mixing ratio of monoaromatic species of 370 ppbv. The mixing ratio of highly reactive monoterpenes peaked at around 6 ppbv in the post-monsoon campaign and correlated strongly with anthropogenic NMHCs, suggesting a strong non-biogenic source in Delhi. A detailed source apportionment study was conducted which included regression analysis to CO, acetylene and other NMHCs, hierarchical cluster analysis, EPA UNMIX 6.0, principal component analysis/absolute principal component scores (PCA/APCS) and comparison with NMHC ratios (benzene/toluene and i-/n-pentane) in ambient samples to liquid and solid fuels. These analyses suggested the primary source of anthropogenic NMHCs in Delhi was from traffic emissions (petrol and diesel), with average mixing ratio contributions from Unmix and PCA/APCS models of 38% from petrol, 14% from diesel and 32% from liquified petroleum gas (LPG) with a smaller contribution (16%) from solid fuel combustion. Detailed consideration of the underlying meteorology during the campaigns showed that the extreme night-time mixing ratios of NMHCs during the post-monsoon campaign were the result of emissions into a very shallow and stagnant boundary layer. The results of this study suggest that despite widespread open burning in India, traffic-related petrol and diesel emissions remain the key drivers of gas-phase urban air pollution in Delhi

    Co-ordinated Airborne Studies in the Tropics (CAST)

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Meteorological Society via http://dx.doi.org/10.1175/BAMS-D-14-00290.1The Co-ordinated Airborne Studies in the Tropics (CAST) project is studying the chemical composition of the atmosphere in the Tropical Warm Pool region to improve understanding of trace gas transport in convection. The main field activities of the CAST (Co-ordinated Airborne Studies in the Tropics) campaign took place in the West Pacific in January/February 2014. The field campaign was based in Guam (13.5°N, 144.8°E) using the UK FAAM BAe-146 atmospheric research aircraft and was coordinated with the ATTREX project with the unmanned Global Hawk and the CONTRAST campaign with the Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical West Pacific as well as the importance of trace gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights between 1°S-14°N and 130°-155°E. It was used to sample at altitudes below 8 km with much of the time spent in the marine boundary layer. It measured a range of chemical species, and sampled extensively within the region of main inflow into the strong West Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement program site on Manus Island, Papua New Guinea (2.1°S, 147.4°E). This article presents an overview of the CAST project focussing on the design and operation of the West Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on the Global Hawk in February/March 2015.CAST is funded by NERC and STFC, with grant NE/ I030054/1 (lead award), NE/J006262/1, NE/J006238/1, NE/J006181/1, NE/J006211/1, NE/J006061/1, NE/J006157/1, NE/J006203/1, NE/J00619X/1, and NE/J006173/1. N. R. P. Harris was supported by a NERC Advanced Research Fellowship (NE/G014655/1). P. I. Palmer acknowledges his Royal Society Wolfson Research Merit Award. The BAe-146-301 Atmospheric Research Aircraft is flown by Directflight Ltd and managed by the Facility for Airborne Atmospheric Measurements, which is a joint entity of the Natural Environment Research Council and the Met Office. The authors thank the staff at FAAM, Directflight and Avalon Aero who worked so hard toward the success of the aircraft deployment in Guam, especially for their untiring efforts when spending an unforeseen 9 days in Chuuk. We thank the local staff at Chuuk and Palau, as well as the authorities in the Federated States of Micronesia for their help in facilitating our research flights. Special thanks go to the personnel associated with the ARM facility at Manus, Papua New Guinea without whose help the ground-based measurements would not have been possible. Thanks to the British Atmospheric Data Centre (BADC) for hosting our data and the NCAS Atmospheric Measurement Facility for providing the radiosonde and ground-based ozone equipment. Chlorophyll-a data used in Figure 1 were extracted using the Giovanni online data system, maintained by the NASA GES DISC. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of this data set. Finally we thank many individual associated with the ATTREX and CONTRAST campaigns for their help in the logistical planning, and we would like to single out Jim Bresch for his excellent and freely provided meteorological advice

    Semblance analysis to assess GPR data from a five-year forensic study of simulated clandestine graves

    Get PDF
    Ground penetrating radar (GPR) surveys have proven useful for locating clandestine graves in a number of forensic searches. There has been extensive research into the geophysical monitoring of simulated clandestine graves in different burial scenarios and ground conditions. Whilst these studies have been used to suggest optimum dominant radar frequencies, the data themselves have not been quantitatively analysed to-date. This study uses a common-offset configuration of semblance analysis, both to characterise velocity trends from GPR diffraction hyperbolae and, since the magnitude of a semblance response is proportional to signal-to-noise ratio, to quantify the strength of a forensic GPR response. 2D GPR profiles were acquired over a simulated clandestine burial, with a wrapped-pig cadaver monitored at three-month intervals between 2008 and 2013 with GPR antennas of three different centre-frequencies (110, 225 and 450 MHz). The GPR response to the cadaver was a strong diffraction hyperbola. Results show, in contrast to resistivity surveys, that semblance analysis show little sensitivity to changes attributable to decomposition, and only a subtle influence of seasonality: velocity increases (0.01–0.02 m/ns) were observed in summer, associated with a decrease (5–10%) in peak semblance magnitude, SM, and potentially in the reflectivity of the cadaver. The lowest-frequency antennas consistently gave the highest signal-to-noise ratio although the grave was nonetheless detectable by all frequencies trialled. These observations suggest that forensic GPR surveys could be undertaken with little seasonal hindrance. Whilst GPR analysis cannot currently provide a quantitative diagnostic proxy for time-since-burial, the consistency of responses suggests that graves will remain detectable beyond the five years shown here

    Aerosol influences on low-level clouds in the West African monsoon

    Get PDF
    Low-level clouds (LLC) cover a wide area of southern West Africa (SWA) during the summer monsoon months, and have an important cooling effect on the regional climate. Previous studies of these clouds have focused on modelling and remote sensing via satellite. We present the first comprehensive set of regional, in situ measurements of cloud microphysics, taken during June – July 2016, as part of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) campaign, assessing spatial and temporal variation in the properties of these clouds. LLC developed overnight and mean cloud cover peaked a few hundred kilometres inland around 10:00 local solar time (LST), before clouds began to dissipate and convection intensified in the afternoon. Additional sea breeze clouds developed near the coast in the late morning, reaching a maximum extent around 12:00 LST. Regional variation in LLC cover was largely determined by the modulation of the cool maritime inflow by the local orography, with peaks on the upwind side of hills and minima on the leeward sides. In the broad-scale cloud field, no lasting impacts related to anthropogenic aerosol were observed downwind of major population centres. The boundary layer cloud drop number concentration (CDNC) was locally variable inland, ranging from 200 to 840 cm−3 (10th and 90th percentiles at standard temperature and pressure), but showed no systematic regional variations. Enhancements were seen in pollution plumes from the coastal cities, but were not statistically significant across the region. The majority of accumulation mode aerosols, and therefore cloud condensation nuclei, were from ubiquitous biomass burning smoke transported from the southern hemisphere. Consequently, all clouds measured (inland and offshore) had significantly higher CDNC and lower effective radius than clouds over the remote south Atlantic from literature. A parcel model sensitivity analysis showed that doubling or halving local emissions only changed the calculated CDNC by 13–22 %, as the high background meant local emissions were a small fraction of total aerosol. As the population of SWA grows, local emissions are expected to rise. Biomass burning smoke transported from the southern hemisphere is likely to dampen any effect of these increased local emissions on cloud-aerosol interactions. An integrative analysis between local pollution and Central African biomass burning emissions must be considered when predicting anthropogenic impacts on the regional cloud field during the West African monsoon

    Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories

    Get PDF
    To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest fluxes were observed over central London, with lower fluxes measured in suburban areas. A footprint model was used to estimate the spatial area from which the measured emissions occurred. This allowed comparison of the flux measurements to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the measurement. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road measurement data taken from the London Atmospheric Emissions Inventory (LAEI). The measurement to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with flux measurements, suggesting significant improvements are still required in the NOx emissions inventory
    • 

    corecore