21 research outputs found
Intrinsic and extrinsic regulation of potency in the intestinal stem cell niche
The intestinal epithelium is one of the most proliferative tissues in the adult body, undergoing near total renewal every 5-7 days. This remarkable turnover is driven by a small population of intestinal stem cells (ISCs), which maintain the physiological function and epithelial barrier integrity of the small intestine, and initiate repair following damage. While the anatomical location of ISCs has been appreciated for decades, the complex genetics and cellular behavior of these cells is still the subject of intense research and debate. Emerging research shows that patterns of ISC proliferation and differentiation are governed by highly complex interactions between the extrinsic signaling of the ISC niche and intrinsic genetic programs that regulate ISC behavior on the cell-autonomous level. In this dissertation, we aim to address the regulation of ISC potency at the intrinsic and extrinsic levels. We describe technologic approaches for the isolation and in vitro culture of two distinct human ISC populations, as well as advanced, high-throughput culture conditions for the study of ISC-niche interactions. To address ISC potency from the perspective of intrinsic genetic programming, we examine the role of Sry-box containing 4 (Sox4), which we demonstrate plays a role in ISC differentiation and proliferation, possibly through epigenetic mechanisms. Together, these studies provide valuable tools for examining the effects of extrinsic signaling on ISC potency in vitro, as well as describe a novel mechanistic regulator of ISC differentiation.Doctor of Philosoph
Sox9 expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro
The inability to identify, isolate, and culture intestinal epithelial stem cells (IESCs) has been prohibitive to the study and therapeutic utilization of these cells. Using a Sox9EGFP mouse model, we demonstrate that Sox9EGFP fluorescence signatures can be used to differentiate between and enrich for progenitors (Sox9EGFPsubLo) and multipotent IESCs (Sox9EGFPlo). Sox9EGFPlo cells generate “organoids” in a recently defined culture system that mimics the native IESC niche. These organoids possess all four differentiated cell types of the small intestine epithelium, demonstrating the multipotent capacity of Sox9EGFPlo cells. Our results are consistent with the previously reported observation that single IESCs generate cryptlike units without a detectable mesenchymal cell component. A prospective search revealed that CD24 is expressed in the Sox9EGFPlo population and marks IESCs that form organoids in culture. CD24 represents the first cell surface marker that facilitates fluorescence-activated cell sorting enrichment of IESCs with widely available antibodies without requiring a specialized fluorescent reporter gene mouse model
Quantitative classification of chromatin dynamics reveals regulators of intestinal stem cell differentiation
Intestinal stem cell (ISC) plasticity is thought to be regulated by broadly permissive chromatin shared between ISCs and their progeny. Here, we have used a Sox9EGFP reporter to examine chromatin across ISC differentiation. We find that open chromatin regions (OCRs) can be defined as broadly permissive or dynamic in a locus-specific manner, with dynamic OCRs found primarily in loci consistent with distal enhancers. By integrating gene expression with chromatin accessibility at transcription factor (TF) motifs in the context of Sox9EGFP populations, we classify broadly permissive and dynamic chromatin relative to TF usage. These analyses identify known and potential regulators of ISC differentiation via association with dynamic changes in chromatin. Consistent with computational predictions, Id3-null mice exhibit increased numbers of cells expressing the ISC-specific biomarker OLFM4. Finally, we examine the relationship between gene expression and 5-hydroxymethylcytosine (5hmC) in Sox9EGFP populations, which reveals 5hmC enrichment in absorptive lineage-specific genes. Our data demonstrate that intestinal chromatin dynamics can be quantitatively defined in a locus-specific manner, identify novel potential regulators of ISC differentiation and provide a chromatin roadmap for further dissecting cis regulation of cell fate in the intestine
SOX9 Maintains Reserve Stem Cells and Preserves Radioresistance in Mouse Small Intestine
Reserve intestinal stem cells (rISCs) are quiescent/slowly cycling under homeostatic conditions, allowing for their identification with label-retention assays. rISCs mediate epithelial regeneration after tissue damage by converting to actively proliferating stem cells (aISCs) that self renew and demonstrate multipotency, which are defining properties of stem cells. Little is known about the genetic mechanisms that regulate the production and maintenance of rISCs. High expression levels of the transcription factor Sox9 (Sox9high) are associated with rISCs. This study investigates the role of SOX9 in regulating the rISC state
Sox4 Promotes Atoh1-Independent Intestinal Secretory Differentiation Toward Tuft and Enteroendocrine Fates
BACKGROUND & AIMS: The intestinal epithelium is maintained by intestinal stem cells (ISCs), which produce postmitotic absorptive and secretory epithelial cells. Initial fate specification toward enteroendocrine, goblet, and Paneth cell lineages requires the transcription factor Atoh1, which regulates differentiation of the secretory cell lineage. However, less is known about the origin of tuft cells, which participate in type II immune responses to parasite infections and appear to differentiate independently of Atoh1. We investigated the role of Sox4 in ISC differentiation. METHODS: We performed experiments in mice with intestinal epithelial-specific disruption of Sox4 (Sox4fl/fl:vilCre; SOX4 conditional knockout [cKO]) and mice without disruption of Sox4 (control mice). Crypt- and single-cell-derived organoids were used in assays to measure proliferation and ISC potency. Lineage allocation and gene expression changes were studied by immunofluorescence, real-time quantitative polymerase chain reaction, and RNA-seq analyses. Intestinal organoids were incubated with the type 2 cytokine interleukin 13 and gene expression was analyzed. Mice were infected with the helminth Nippostrongylus brasiliensis and intestinal tissues were collected 7 days later for analysis. Intestinal tissues collected from mice that express green fluorescent protein regulated by the Atoh1 promoter (Atoh1GFP mice) and single-cell RNA-seq analysis were used to identify cells that coexpress Sox4 and Atoh1. We generated SOX4-inducible intestinal organoids derived from Atoh1fl/fl:vilCreER (ATOH1 inducible knockout) mice and assessed differentiation. RESULTS: Sox4cKO mice had impaired ISC function and secretory differentiation, resulting in decreased numbers of tuft and enteroendocrine cells. In control mice, numbers of SOX4+ cells increased significantly after helminth infection, coincident with tuft cell hyperplasia. Sox4 was activated by interleukin 13 in control organoids; SOX4cKO mice had impaired tuft cell hyperplasia and parasite clearance after infection with helminths. In single-cell RNA-seq analysis, Sox4+/Atoh1- cells were enriched for ISC, progenitor, and tuft cell genes; 12.5% of Sox4-expressing cells coexpressed Atoh1 and were enriched for enteroendocrine genes. In organoids, overexpression of Sox4 was sufficient to induce differentiation of tuft and enteroendocrine cells-even in the absence of Atoh1. CONCLUSIONS: We found Sox4 promoted tuft and enteroendocrine cell lineage allocation independently of Atoh1. These results challenge the longstanding model in which Atoh1 is the sole regulator of secretory differentiation in the intestine and are relevant for understanding epithelial responses to parasitic infection
CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells
Recent seminal studies have rapidly advanced the understanding of intestinal epithelial stem cell (IESC) biology in murine models. However, the lack of techniques suitable for isolation and subsequent downstream analysis of IESCs from human tissue has hindered the application of these findings toward the development of novel diagnostics and therapies with direct clinical relevance. This study demonstrates that the cluster of differentiation genes CD24 and CD44 are differentially expressed across LGR5 positive “active” stem cells as well as HOPX positive “facultative” stem cells. Fluorescence-activated cell sorting enables differential enrichment of LGR5 cells (CD24−/CD44+) and HOPX (CD24+/CD44+) cells for gene expression analysis and culture. These findings provide the fundamental methodology and basic cell surface signature necessary for isolating and studying intestinal stem cell populations in human physiology and disease
A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis
Stem cells reside in 'niches', where support cells provide critical signalling for tissue renewal. Culture methods mimic niche conditions and support the growth of stem cells in vitro. However, current functional assays preclude statistically meaningful studies of clonal stem cells, stem cell-niche interactions, and genetic analysis of single cells and their organoid progeny. Here, we describe a 'microraft array' (MRA) that facilitates high-throughput clonogenic culture and computational identification of single intestinal stem cells (ISCs) and niche cells. We use MRAs to demonstrate that Paneth cells, a known ISC niche component, enhance organoid formation in a contact-dependent manner. MRAs facilitate retrieval of early enteroids for quantitative PCR to correlate functional properties, such as enteroid morphology, with differences in gene expression. MRAs have broad applicability to assaying stem cell-niche interactions and organoid development, and serve as a high-throughput culture platform to interrogate gene expression at early stages of stem cell fate choices
Isolation and Characterization of Intestinal Stem Cells Based on Surface Marker Combinations and Colony-Formation Assay
Identification of intestinal stem cells (ISCs) has relied heavily on the use of transgenic reporters in mice, but this approach is limited by mosaic expression patterns and difficult to directly apply to human tissues. We sought to identify reliable surface markers of ISCs and establish a robust functional assay to characterize ISCs from mouse and human tissues