157 research outputs found
Design and Validation of a Device to Aid in Extension Ladder Setup
The problem of ladder base slippage is a leading cause of workplace injuries and causes a number of annual deaths.Β Research has shown that ladder users tend to set up extension ladders at an angle between 66Β° and 69Β° above horizontal, which is much shallower than the specified standard of 75.5Β°. This results in an increase in the friction required at the base of the ladder to support the weight of the ladder and its user, and leads to an increased likelood of a slideout accident.Β To counteract the problem of ladder base slipping, a device was developed to aid the user in achieving a proper setup angle.Β The device uses a mechanical switch to wired to LEDs that provide the user feedback on setup angle.Β The device was tested in a laboratory environment, and was shown to positively impact the ability of the user to erect the ladder at a proper angle
Radio-Pathomic Approaches in Pediatric Neurooncology: Opportunities and Challenges
With medical software platforms moving to cloud environments with scalable storage and computing, the translation of predictive artificial intelligence (AI) models to aid in clinical decision-making and facilitate personalized medicine for cancer patients is becoming a reality. Medical imaging, namely radiologic and histologic images, has immense analytical potential in neuro-oncology, and models utilizing integrated radiomic and pathomic data may yield a synergistic effect and provide a new modality for precision medicine. At the same time, the ability to harness multi-modal data is met with challenges in aggregating data across medical departments and institutions, as well as significant complexity in modeling the phenotypic and genotypic heterogeneity of pediatric brain tumors. In this paper, we review recent pathomic and integrated pathomic, radiomic, and genomic studies with clinical applications. We discuss current challenges limiting translational research on pediatric brain tumors and outline technical and analytical solutions. Overall, we propose that to empower the potential residing in radio-pathomics, systemic changes in cross-discipline data management and end-to-end software platforms to handle multi-modal data sets are needed, in addition to embracing modern AI-powered approaches. These changes can improve the performance of predictive models, and ultimately the ability to advance brain cancer treatments and patient outcomes through the development of such models
Molecular, pathological, radiological, and immune profiling of non-brainstem pediatric high-grade glioma from the HERBY phase II randomized trial
The HERBY trial was a phase II open-label, randomized, multicenter trial evaluating bevacizumab (BEV) in addition to temozolomide/radiotherapy in patients with newly diagnosed non-brainstem high-grade glioma (HGG) between the ages of 3 and 18 years. We carried out comprehensive molecular analysis integrated with pathology, radiology, and immune profiling. In post-hoc subgroup analysis, hypermutator tumors (mismatch repair deficiency and somatic POLE/POLD1 mutations) and those biologically resembling pleomorphic xanthoastrocytoma ([PXA]-like, driven by BRAF_V600E or NF1 mutation) had significantly more CD8+ tumor-infiltrating lymphocytes, and longer survival with the addition of BEV. Histone H3 subgroups (hemispheric G34R/V and midline K27M) had a worse outcome and were immune cold. Future clinical trials will need to take into account the diversity represented by the term ββHGGββ in the pediatric population
Recommended from our members
Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas
Recommended from our members
Intratumoral Genetic and Functional Heterogeneity in Pediatric Glioblastoma.
Pediatric glioblastoma (pGBM) is a lethal cancer with no effective therapies. To understand the mechanisms of tumor evolution in this cancer, we performed whole-genome sequencing with linked reads on longitudinally resected pGBM samples. Our analyses showed that all diagnostic and recurrent samples were collections of genetically diverse subclones. Clonal composition rapidly evolved at recurrence, with less than 8% of nonsynonymous single-nucleotide variants being shared in diagnostic-recurrent pairs. To track the origins of the mutational events observed in pGBM, we generated whole-genome datasets for two patients and their parents. These trios showed that genetic variants could be (i) somatic, (ii) inherited from a healthy parent, or (iii) de novo in the germlines of pGBM patients. Analysis of variant allele frequencies supported a model of tumor growth involving slow-cycling cancer stem cells that give rise to fast-proliferating progenitor-like cells and to nondividing cells. Interestingly, radiation and antimitotic chemotherapeutics did not increase overall tumor burden upon recurrence. These findings support an important role for slow-cycling stem cell populations in contributing to recurrences, because slow-cycling cell populations are expected to be less prone to genotoxic stress induced by these treatments and therefore would accumulate few mutations. Our results highlight the need for new targeted treatments that account for the complex functional hierarchies and genomic heterogeneity of pGBM. SIGNIFICANCE: This work challenges several assumptions regarding the genetic organization of pediatric GBM and highlights mutagenic programs that start during early prenatal development.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2111/F1.large.jpg.Wellcome Trust
Royal Societ
RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae
Studies in the budding yeast, Saccharomyces cerevisiae, have demonstrated that a substantial fraction of double-strand break repair following acute radiation exposure involves homologous recombination between repetitive genomic elements. We have previously described an assay in S. cerevisiae that allows us to model how repair of multiple breaks leads to the formation of chromosomal translocations by single-strand annealing (SSA) and found that Rad59, a paralog of the single-stranded DNA annealing protein Rad52, is critically important in this process. We have constructed several rad59 missense alleles to study its function more closely. Characterization of these mutants revealed proportional defects in both translocation formation and spontaneous direct-repeat recombination, which is also thought to occur by SSA. Combining the rad59 missense alleles with a null allele of RAD1, which encodes a subunit of a nuclease required for the removal of non-homologous tails from annealed intermediates, substantially suppressed the low frequency of translocations observed in rad1-null single mutants. These data suggest that at least one role of Rad59 in translocation formation by SSA is supporting the machinery required for cleavage of non-homologous tails
Consumer and staff perspectives of the implementation frequency and value of recovery and wellbeing oriented practices
Background: Despite advances in our understanding of what mental health systems and services can do to enhance recovery and wellbeing outcomes for people seeking support, there is limited evidence demonstrating that this body of work has translated successfully into mental health service practice. The Collaborative Recovery Model (CRM) is a practice framework that has been designed to support application of recovery and wellbeing oriented principles and practices within mental health service delivery. The aims of this study were to assess consumer and staff perceptions of implementation frequency during service engagement and the value of this approach for assisting recovery within a setting where the CRM approach had been adopted. Methods: The setting was a large Australian community managed mental health organisation. The study involved a cross-sectional analysis of consumer (n = 116) and staff practitioner (n = 62) perspectives. A series of paired sample t-tests assessed for differences between consumer and staff perceptions of the: (i) importance of key practice elements for assisting recovery, and the (ii) frequency that key practice elements are utilised during engagement sessions. Spearman\u27s r correlational analysis explored associations between importance, frequency and helpfulness of sessions. Results: Key practice elements of the model were applied during service interactions at a high level and perceived by the majority of consumers and staff participants as being important or very important for assisting recovery. Significant moderate correlations were found between the extent that practice elements were valued and the level at which they were applied. Higher levels of implementation of CRM practices were associated with higher ratings of perceived session helpfulness. The strongest association was between \u27encouragement to set tasks to complete between support visits\u27 and perceived helpfulness. Conclusions: Consumer and staff responses revealed that the key practice elements of the CRM were frequently implemented during service engagement interactions and were seen as valuable for assisting recovery. The level of agreement between raters suggests firstly, that the key practice elements were apparent and able to be rated as occurring, and secondly that the CRM approach is seen as responsive to consumer needs. The results have implications for translating recovery and wellbeing oriented knowledge into mental health service practice
Targeted Gene Expression Profiling Predicts Meningioma Outcomes and Radiotherapy Responses
Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (Nβ=β1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (Nβ=β9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, Pβ\u3cβ0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% confidence interval 0.37 to 0.78, Pβ=β0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses
- β¦