2 research outputs found
The Enigmatic Brown Dwarf WISEA J153429.75-104303.3 (a.k.a. "The Accident")
Continued follow-up of WISEA J153429.75−104303.3, announced in Meisner et al., has proven it to have an unusual set of properties. New imaging data from Keck/MOSFIRE and HST/WFC3 shows that this object is one of the few faint proper motion sources known with J − ch2 >8 mag, indicating a very cold temperature consistent with the latest known Y dwarfs. Despite this, it has W1−W2 and ch1−ch2 colors ~1.6 mag bluer than a typical Y dwarf. A new trigonometric parallax measurement from a combination of WISE, Spitzer, and HST astrometry confirms a nearby distance of pc and a large transverse velocity of 207.4 ± 15.9 km s−1. The absolute J, W2, and ch2 magnitudes are in line with the coldest known Y dwarfs, despite the highly discrepant W1−W2 and ch1−ch2 colors. We explore possible reasons for the unique traits of this object and conclude that it is most likely an old, metal-poor brown dwarf and possibly the first Y subdwarf. Given that the object has an HST F110W magnitude of 24.7 mag, broadband spectroscopy and photometry from JWST are the best options for testing this hypothesis
Discovery of a Hypervelocity L Subdwarf at the Star/Brown Dwarf Mass Limit
We report the discovery of a high-velocity, very low-mass star or brown dwarf whose kinematics suggest it is unbound to the Milky Way. CWISE J124909.08+362116.0 was identified by citizen scientists in the Backyard Worlds: Planet 9 program as a high-proper-motion (μ = 0.″9 yr−1) faint red source. Moderate-resolution spectroscopy with Keck/NIRES reveals it to be a metal-poor early L subdwarf with a large radial velocity (−103 ± 10 km s−1), and its estimated distance of 125 ± 8 pc yields a speed of 456 ± 27 km s−1 in the Galactic rest frame, near the local escape velocity for the Milky Way. We explore several potential scenarios for the origin of this source, including ejection from the Galactic center ≳3 Gyr in the past, survival as the mass donor companion to an exploded white dwarf, acceleration through a three-body interaction with a black hole binary in a globular cluster, and accretion from a Milky Way satellite system. CWISE J1249+3621 is the first hypervelocity very low-mass star or brown dwarf to be found and the nearest of all such systems. It may represent a broader population of very high-velocity, low-mass objects that have undergone extreme accelerations.</p