14 research outputs found

    A Comparative Study for the Evaluation of Two Doses of Ellagic Acid on Hepatic Drug Metabolizing and Antioxidant Enzymes in the Rat

    Get PDF
    The present study was designed to evaluate different doses of ellagic acid (EA) in vivo in rats for its potential to modulate hepatic phases I, II, and antioxidant enzymes. EA (10 or 30 mg/kg/day, intragastrically) was administered for 14 consecutive days, and activity, protein, and mRNA levels were determined. Although the cytochrome P450 (CYP) 2B and CYP2E enzyme activities were decreased significantly, the activities of all other enzymes were unchanged with the 10 mg/kg/day EA. In addition, western-blot and qRT-PCR results clearly corroborated the above enzyme expressions. On the other hand, while the NAD(P)H:quinone oxidoreductase 1 (NQO1), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities were increased significantly, CYP1A, 2B, 2C, 2E, and 19 enzyme activities were reduced significantly with 30 mg/kg/day EA. In addition, CYP2B, 2C6, 2E1, and 19 protein and mRNA levels were substantially decreased by the 30 mg/kg/day dose of EA, but the CYP1A protein, and mRNA levels were not changed. CYP3A enzyme activity, protein and mRNA levels were not altered by neither 10 nor 30 mg/kg/day ellagic acid. These results indicate that EA exerts a dose-dependent impact on the metabolism of chemical carcinogens and drugs by affecting the enzymes involved in xenobiotics activation/detoxification and antioxidant pathways

    Metformin-Cisplatin Combination Treatment Alters mRNA Expression of Hexokinase II Gene in LNCaP and PC3 Prostate Cancer Cell Lines

    No full text
    Metformin is an antidiabetic drug with anticancer properties. Cisplatin is known as one of the most potent chemotherapeutics for treatment of various types of cancer. In order to overcome cisplatin resistance and toxicity, the drug can be combined with other chemotherapeutics that sensitize tumour cells to cisplatin. The ability of metformin to potentiate cisplatin-mediated killing of cancer cells in vitro, makes it a plausible candidate for combination with cisplatin-based therapy. The aim of this study is to examine the combined effect of these drugs on mRNA expression of Hexokinase II gene participating in glycolysis as well as cancer promotion

    Importance of NOS3 Genetic Polymorphisms in the Risk of Development of Ischemic Stroke in the Turkish Population

    No full text
    In the present study, we aimed to investigate the relationship between endothelial nitric oxide synthase 3 (NOS3) G894T, T-786C, and intron 4 variable number of tandem repeat (VNTR) variants, alone or in combination, and the risk of incidence of ischemic stroke in the Turkish population. The genotypes for all polymorphisms were determined by polymerase chain reaction/restriction fragment length polymorphism techniques on 245 ischemic stroke patients and 145 controls. In the case-control analysis, no significant difference was observed between stroke patients and controls with respect to NOS3 G894T, T-786C, and intron 4 VNTR polymorphisms genotype and allele frequency distribution. However, the copresence of G894T and intron 4 VNTR risk-elevating genotypes in the same individual increased the risk of stroke seven times (odds ratio=7.083, 95% confidence interval=0.866-57.963, p=0.029)

    Cytochrome P4501A1 genotypes and smoking- and hypertension-related ischemic stroke risk

    No full text
    This study aimed to determine whether the coding (A4889G) and noncoding region (T6235C) polymorphisms of the gene coding for cytochrome P4501A1 (CYP1A1), a xenobiotic-metabolizing enzyme responsible for the metabolism of carcinogenic polycyclic aromatic hydrocarbons, are involved in the pathogenesis of ischemic stroke in Turkish population. Study group consisted of 226 ischemic stroke patients and 113 controls. Genotypes were attained by allele-specific polymerase chain reaction (PCR) for A4889G and PCR/restriction fragment length polymorphism analysis for T6235C. Frequency of 6235C allele was significantly lower in patients (0.151) compared with controls (0.226, P = 0.015). Prevalence of hypertension and hypertension-associated ischemic stroke risk was lower for 6235C allele carriers. This allele decreased ischemic stroke risk twofold (adjusted odds ratio = 0.48, P = 0.005). There was almost no difference in 4889G allele frequencies in patients (0.445) and controls (0.425). However, prevalence of hypertension was lower in 4889G allele carriers when compared with the wild-type genotypes. In addition, risk of ischemic stroke for smoker and hypertensive individuals was lower when they have at least one 4889G allele. The present study demonstrated that CYP1A1 genetic variants contribute to interindividual variability in smoking- and hypertension-induced ischemic stroke risk

    In vivo examination of the effects of hydroxycinnamic acid on xenobiotic metabolizing and antioxidant enzymes

    Get PDF
    In the last decade, hydroxycinnamic acids (HCA) have gained increasing attention from researchers due to their antioxidant potential. The aim of this study was to examine in detail the impact of dietary HCA on particular types of P450 and also selected phase II and antioxidant enzymes in Wistar rat. HCA (10 mu M/kg/day, i.p.) was administered for ten continuous days. Examination of the activities and mRNA and protein levels revealed that CYP2B, 2C6 and 3A enzyme activities were not altered significantly, with Western blot and qRT-PCR results corroborating this result. While treatment with HCA led to a significant reduction in CYP1A1/CYP1A2-associated enzyme activities, CYP1A1 protein, and mRNA levels were found to be unchanged. Aromatase (CYP19) activity, as well as protein and mRNA levels, were significantly reduced with HCA treatment. On the other hand, the NAD(P) H: quinone oxidoreductase 1 (NQO1), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferases (GSTs) activities were increased significantly. Also, HCA treatment significantly increased the GST-mu and GST-theta mRNA levels

    In vivo examination of the effects of hydroxycinnamic acid on xenobiotic metabolizing and antioxidant enzymes

    No full text
    In the last decade, hydroxycinnamic acids (HCA) have gained increasing attention from researchers due to their antioxidant potential. The aim of this study was to examine in detail the impact of dietary HCA on particular types of P450 and also selected phase II and antioxidant enzymes in Wistar rat. HCA (10 mM/kg/day, i.p.) was administered for ten continuous days. Examination of the activities and mRNA and protein levels revealed that CYP2B, 2C6 and 3A enzyme activities were not altered significantly, with Western blot and qRT-PCR results corroborating this result. While treatment with HCA led to a significant reduction in CYP1A1/CYP1A2-associated enzyme activities, CYP1A1 protein, and mRNA levels were found to be unchanged. Aromatase (CYP19) activity, as well as protein and mRNA levels, were significantly reduced with HCA treatment. On the other hand, the NAD(P)H:quinone oxidoreductase 1 (NQO1), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferases (GSTs) activities were increased significantly. Also, HCA treatment significantly increased the GST-mu and GST-theta mRNA levels. These observations may be of importance given the potential use of HCA as a chemopreventive and as an anticancer agent

    Xenogenic neural stem cell-derived extracellular nanovesicles modulate human mesenchymal stem cell fate and reconstruct metabolomic structure

    No full text
    Abstract Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration
    corecore