10,750 research outputs found

    Oxygen vacancy segregation and space-charge effects in grain boundaries of dry and hydrated BaZrO3

    Get PDF
    A space-charge model is applied to describe the equilibrium effects of segregation of double-donor oxygen vacancies to grain boundaries in dry and wet acceptor-doped samples of the perovskite oxide BaZrO3. The grain boundary core vacancy concentrations and electrostatic potential barriers resulting from different vacancy segregation energies are evaluated. Density-functional calculations on vacancy segregation to the mirror-symmetric \Sigma 3 (112) [-110] tilt grain boundary are also presented. Our results indicate that oxygen vacancy segregation can be responsible for the low grain boundary proton conductivity in BaZrO3 reported in the literature

    Real-time analysis keratometer

    Get PDF
    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis

    Destruction of chain-superconductivity in YBa_2Cu_4O_8 in a weak magnetic field

    Full text link
    We report measurements of the temperature dependent components of the magnetic penetration depth {\lambda}(T) in single crystal samples of YBa_2Cu_4O_8 using a radio frequency tunnel diode oscillator technique. We observe a downturn in {\lambda}(T) at low temperatures for currents flowing along the b and c axes but not along the a axis. The downturn in {\lambda}_b is suppressed by a small dc field of ~0.25 T. This and the zero field anisotropy of {\lambda}(T) likely result from proximity induced superconducting on the CuO chains, however we also discuss the possibility that a significant part of the anisotropy might originate from the CuO2 planes.Comment: 5 page

    Linear-response theory of the longitudinal spin Seebeck effect

    Full text link
    We theoretically investigate the longitudinal spin Seebeck effect, in which the spin current is injected from a ferromagnet into an attached nonmagnetic metal in a direction parallel to the temperature gradient. Using the fact that the phonon heat current flows intensely into the attached nonmagnetic metal in this particular configuration, we show that the sign of the spin injection signal in the longitudinal spin Seebeck effect can be opposite to that in the conventional transverse spin Seebeck effect when the electron-phonon interaction in the nonmagnetic metal is sufficiently large. Our linear-response approach can explain the sign reversal of the spin injection signal recently observed in the longitudinal spin Seebeck effect.Comment: Proc. of ICM 2012 (Accepted for publication in J. Korean Phys. Soc.), typos correcte

    Curie-like paramagnetism due to incomplete Zhang-Rice singlet formation in La2-xSrxCuO4

    Full text link
    In an effort to elucidate the origin of the Curie-like paramagnetism that is generic for heavily-overdoped cuprates, we have performed high transverse-field muon spin rotation (TF-muSR) measurements of La2-xSrxCuO4 single crystals over the Sr content range 0.145 < x < 0.33. We show that the x-dependence of the previously observed field-induced broadening of the internal magnetic field distribution above the superconducting transition temperature Tc reflects the presence of two distinct contributions. One of these becomes less pronounced with increasing x and is attributed to diminishing antiferromagnetic correlations. The other grows with increasing x, but decreases above x ~ 0.30, and is associated with the Curie-like term in the bulk magnetic susceptibility. In contrast to the Curie-like term, however, this second contribution to the TF-muSR line width extends back into the underdoped regime. Our findings imply a coexistence of antiferromagnetically correlated and paramagnetic moments, with the latter becoming dominant beyond x ~ 0.185. This suggests that the doped holes do not neutralize all Cu spins via the formation of Zhang-Rice singlets. Moreover, the paramagnetic component of the TF-muSR line width is explained by holes progressively entering the Cu 3d_{x^2-y^2} orbital with doping.Comment: 8 pages, 7 figure

    Boosting up quantum key distribution by learning statistics of practical single photon sources

    Full text link
    We propose a simple quantum-key-distribution (QKD) scheme for practical single photon sources (SPSs), which works even with a moderate suppression of the second-order correlation g(2)g^{(2)} of the source. The scheme utilizes a passive preparation of a decoy state by monitoring a fraction of the signal via an additional beam splitter and a detector at the sender's side to monitor photon number splitting attacks. We show that the achievable distance increases with the precision with which the sub-Poissonian tendency is confirmed in higher photon number distribution of the source, rather than with actual suppression of the multi-photon emission events. We present an example of the secure key generation rate in the case of a poor SPS with g(2)=0.19g^{(2)} = 0.19, in which no secure key is produced with the conventional QKD scheme, and show that learning the photon-number distribution up to several numbers is sufficient for achieving almost the same achievable distance as that of an ideal SPS.Comment: 11 pages, 3 figures; published version in New J. Phy

    Proposal to stabilize and detect half-quantum vortices in strontium ruthenate thin films: Non-Abelian braiding statistics of vortex matter in a px+ipy{p_x}+i{p_y} superconductor

    Full text link
    We propose a simple way to stabilize half-quantum vortices in superconducting strontium ruthenate, assuming the order parameter is of chiral px+ipyp_x + ip_y symmetry, as is suggested by recent experiments. The method, first given by Salomaa and Volovik in the context of Helium-3, is very naturally suited for strontium ruthenate, which has a layered, quasi-two-dimensional, perovskite crystal structure. We propose possible experiments to detect their non abelian-braiding statistics. These experiments are of potential importance for topological quantum computation

    Polar surface engineering in ultra-thin MgO(111)/Ag(111) -- possibility of metal-insulator transition and magnetism

    Get PDF
    A recent report [Kiguchi {\it et al.}, Phys. Rev. B {\bf 68}, 115402 (2003)] that the (111) surface of 5 MgO layers grown epitaxially on Ag(111) becomes metallic to reduce the electric dipole moment raises a question of what will happen when we have fewer MgO layers. Here we have revealed, first experimentally with electron energy-loss spectroscopy, that MgO(111) remains metallic even when one-layer thick, and theoretically with the density functional theory that the metallization should depend on the nature of the substrate. We further show, with a spin-density functional calculation, that a ferromagnetic instability may be expected for thicker films.Comment: 5 pages, 7 figure
    corecore