2,181 research outputs found

    Bell's theorem without inequalities and without alignments

    Full text link
    A proof of Bell's theorem without inequalities is presented which exhibits three remarkable properties: (a) reduced local states are immune to collective decoherence; (b) distant local setups do not need to be aligned, since the required perfect correlations are achieved for any local rotation of the local setups; (c) local measurements require only individual measurements on the qubits. Indeed, it is shown that this proof is essentially the only one which fulfils (a), (b), and (c).Comment: REVTeX4, 4 page

    Mermin inequalities for perfect correlations

    Full text link
    Any n-qubit state with n independent perfect correlations is equivalent to a graph state. We present the optimal Bell inequalities for perfect correlations and maximal violation for all classes of graph states with n < 7 qubits. Twelve of them were previously unknown and four give the same violation as the Greenberger-Horne-Zeilinger state, although the corresponding states are more resistant to decoherence.Comment: REVTeX4, 5 pages, 1 figur

    Stronger two-observer all-versus-nothing violation of local realism

    Full text link
    We introduce a two-observer all-versus-nothing proof of Bell's theorem which reduces the number of required quantum predictions from 9 [A. Cabello, Phys. Rev. Lett. 87, 010403 (2001); Z.-B. Chen et al., Phys. Rev. Lett. 90, 160408 (2003)] to 4, provides a greater amount of evidence against local realism, reduces the detection efficiency requirements for a conclusive experimental test of Bell's theorem, and leads to a Bell's inequality which resembles Mermin's inequality for three observers [N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990)] but requires only two observers.Comment: REVTeX4, 5 page

    Bipartite all-versus-nothing proofs of Bell's theorem with single-qubit measurements

    Full text link
    If we distribute n qubits between two parties, which quantum pure states and distributions of qubits would allow all-versus-nothing (or Greenberger-Horne-Zeilinger-like) proofs of Bell's theorem using only single-qubit measurements? We show a necessary and sufficient condition for the existence of these proofs for any number of qubits, and provide all distinct proofs up to n=7 qubits. Remarkably, there is only one distribution of a state of n=4 qubits, and six distributions, each for a different state of n=6 qubits, which allow these proofs.Comment: REVTeX4, 4 pages, 2 figure

    Efficient and weak efficient points in vector optimization with generalized cone convexity

    Get PDF
    AbstractIn this paper, we present necessary and sufficient conditions of efficiency and weak efficiency under generalized cone-convexity and cone-subconvexity. The results are stated in partially ordered real linear spaces from a separation theorem between convex cones which need not be solid

    Six-qubit permutation-based decoherence-free orthogonal basis

    Get PDF
    There is a natural orthogonal basis of the 6-qubit decoherence-free (DF) space robust against collective noise. Interestingly, most of the basis states can be obtained from one another just permuting qubits. This property: (a) is useful for encoding qubits in DF subspaces, (b) allows the implementation of the Bennett-Brassard 1984 (BB84) protocol in DF subspaces just permuting qubits, which completes a the method for quantum key distribution using DF states proposed by Boileau et al. [Phys. Rev. Lett. 92, 017901 (2004)], and (c) points out that there is only one 6-qubit DF state which is essentially new (not obtained by permutations) and therefore constitutes an interesting experimental challenge.Comment: REVTeX4, 5 page

    Bipartite Bell inequalities for hyperentangled states

    Full text link
    We show that bipartite Bell inequalities based on the Einstein-Podolsky-Rosen criterion for elements of reality and derived from the properties of some hyperentangled states allow feasible experimental verifications of the fact that quantum nonlocality grows exponentially with the size of the subsystems, and Bell loophole-free tests with currently available photodetection efficiencies.Comment: REVTeX4, 5 page

    Compact set of invariants characterizing graph states of up to eight qubits

    Full text link
    The set of entanglement measures proposed by Hein, Eisert, and Briegel for n-qubit graph states [Phys. Rev. A 69, 062311 (2004)] fails to distinguish between inequivalent classes under local Clifford operations if n > 6. On the other hand, the set of invariants proposed by van den Nest, Dehaene, and De Moor (VDD) [Phys. Rev. A 72, 014307 (2005)] distinguishes between inequivalent classes, but contains too many invariants (more than 2 10^{36} for n=7) to be practical. Here we solve the problem of deciding which entanglement class a graph state of n < 9 qubits belongs to by calculating some of the state's intrinsic properties. We show that four invariants related to those proposed by VDD are enough for distinguishing between all inequivalent classes with n < 9 qubits.Comment: REVTeX4, 9 pages, 1 figur

    Loophole-free Bell's experiment and two-photon all-versus-nothing violation of local realism

    Full text link
    We introduce an all-versus-nothing proof of impossibility of Einstein-Podolsky-Rosen's local elements of reality for two photons entangled both in polarization and path degrees of freedom, which leads to a Bell's inequality where the classical bound is 8 and the quantum prediction is 16. A simple estimation of the detection efficiency required to close the detection loophole using this proof gives eta > 0.69. This efficiency is lower than that required for previous proposals.Comment: REVTeX4, 4 page

    N-particle N-level singlet states: Some properties and applications

    Full text link
    Three apparently unrelated problems which have no solution using classical tools are described: the "N-strangers," "secret sharing," and "liar detection" problems. A solution for each of them is proposed. Common to all three solutions is the use of quantum states of total spin zero of N spin-(N-1)/2 particles.Comment: REVTeX4, 4 pages, 1 figur
    • …
    corecore