254 research outputs found
A review of consumer awareness, understanding and use of food-based dietary guidelines
Copyright @ 2011 Cambridge University PressFood-based dietary guidelines (FBDG) have primarily been designed for the consumer to encourage healthy, habitual food choices, decrease chronic disease risk and improve public health. However, minimal research has been conducted to evaluate whether FBDG are utilised by the public. The present review used a framework of three concepts, awareness, understanding and use, to summarise consumer evidence related to national FBDG and food guides. Searches of nine electronic databases, reference lists and Internet grey literature elicited 939 articles. Predetermined exclusion criteria selected twenty-eight studies for review. These consisted of qualitative, quantitative and mixed study designs, non-clinical participants, related to official FBDG for the general public, and involved measures of consumer awareness, understanding or use of FBDG. The three concepts of awareness, understanding and use were often discussed interchangeably. Nevertheless, a greater amount of evidence for consumer awareness and understanding was reported than consumer use of FBDG. The twenty-eight studies varied in terms of aim, design and method. Study quality also varied with raw qualitative data, and quantitative method details were often omitted. Thus, the reliability and validity of these review findings may be limited. Further research is required to evaluate the efficacy of FBDG as a public health promotion tool. If the purpose of FBDG is to evoke consumer behaviour change, then the framework of consumer awareness, understanding and use of FBDG may be useful to categorise consumer behaviour studies and complement the dietary survey and health outcome data in the process of FBDG evaluation and revision.This study is funded by the European Commission Sixth Framework Programme (contract no. 036196)
Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H from Cassini Far-IR Spectroscopy
Far-IR 16-1000 m spectra of Saturn's hydrogen-helium continuum measured
by Cassini's Composite Infrared Spectrometer (CIRS) are inverted to construct a
near-continuous record of upper tropospheric (70-700 mbar) temperatures and
para-H fraction as a function of latitude, pressure and time for a third of
a Saturnian year (2004-2014, from northern winter to northern spring). The
thermal field reveals evidence of reversing summertime asymmetries superimposed
onto the belt/zone structure. The temperature structure that is almost
symmetric about the equator by 2014, with seasonal lag times that increase with
depth and are qualitatively consistent with radiative climate models. Localised
heating of the tropospheric hazes (100-250 mbar) create a distinct perturbation
to the temperature profile that shifts in magnitude and location, declining in
the autumn hemisphere and growing in the spring. Changes in the para-H
() distribution are subtle, with a 0.02-0.03 rise over the spring
hemisphere (200-500 mbar) perturbed by (i) low- air advected by both the
springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of
high- air at northern high latitudes, responsible for a developing
north-south asymmetry in . Conversely, the shifting asymmetry in the
para-H disequilibrium primarily reflects the changing temperature structure
(and the equilibrium distribution of ), rather than actual changes in
induced by chemical conversion or transport. CIRS results interpolated to
the same point in the seasonal cycle as re-analysed Voyager-1 observations show
qualitative consistency, with the exception of the tropical tropopause near the
equatorial zones and belts, where downward propagation of a cool temperature
anomaly associated with Saturn's stratospheric oscillation could potentially
perturb tropopause temperatures, para-H and winds. [ABRIDGED]Comment: Preprint accepted for publication in Icarus, 29 pages, 18 figure
Titan's Emergence from Winter
We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly
Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean
The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean
Temporal Variations of Titan's Middle-Atmospheric Temperatures From 2004-2009 Observed by Cassini/CIRS
We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (Ls from 293deg to 4deg; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1 to 2K from 2004 through early 2007, then declined by 2 to 4K throughout 2008 and 2009, with the changes, being larger at more, polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1 to 2K increase, from 2005 through 2009. At north polar latitudes within the polar vortex, temperatures in the middle stratosphe=re show a approx. 4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature. changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation
Titan Science with the James Webb Space Telescope (JWST)
The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the
successor to the Hubble Space Telescope (HST) but with a significantly larger
aperture (6.5 m) and advanced instrumentation focusing on infrared science
(0.6-28.0 m ). In this paper we examine the potential for scientific
investigation of Titan using JWST, primarily with three of the four
instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be
complementary. Five core scientific themes are identified: (i) surface (ii)
tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and
(v) stratospheric hazes. We discuss each theme in depth, including the
scientific purpose, capabilities and limitations of the instrument suite, and
suggested observing schemes. We pay particular attention to saturation, which
is a problem for all three instruments, but may be alleviated for NIRCam
through use of selecting small sub-arrays of the detectors - sufficient to
encompass Titan, but with significantly faster read-out times. We find that
JWST has very significant potential for advancing Titan science, with a
spectral resolution exceeding the Cassini instrument suite at near-infrared
wavelengths, and a spatial resolution exceeding HST at the same wavelengths. In
particular, JWST will be valuable for time-domain monitoring of Titan, given a
five to ten year expected lifetime for the observatory, for example monitoring
the seasonal appearance of clouds. JWST observations in the post-Cassini period
will complement those of other large facilities such as HST, ALMA, SOFIA and
next-generation ground-based telescopes (TMT, GMT, EELT).Comment: 50 pages, including 22 figures and 2 table
Spitzer IRS observations of Titan as a precursor to JWST MIRI observations
In this work, we present for the first time infrared spectra of Titan from the Spitzer Space Telescope (2004â2009). The data are from both the short wavelengthâlow resolution (SL; 5.13â14.29 ÎŒm, R ⌠60â127) and short wavelengthâhigh resolution (SH; 9.89â19.51 ÎŒm, R ⌠600) channels showing the emissions of CH4, C2H2, C2H4, C2H6, C3H4, C3H6, C3H8, C4H2, HCN, HC3N, and CO2. We compare the results obtained for Titan from Spitzer to those of the Cassini Composite Infrared Spectrometer (CIRS) for the same time period, focusing on the 16.35â19.35 ÎŒm wavelength range observed by the SH channel but impacted by higher noise levels in the CIRS observations. We use the SH data to provide estimated haze extinction cross sections for the 16.67â17.54 ÎŒm range that are missing in previous studies. We conclude by identifying spectral features in the 16.35â19.35 ÎŒm wavelength range that could be analyzed further through upcoming James Webb Space Telescope Cycle 1 observations with the Mid-Infrared Instrument (5.0â28.3 ÎŒm, R ⌠1500â3500). We also highlight gaps in the current spectroscopic knowledge of molecular bands, including candidate trace species such as C60 and detected trace species such as C3H6, that could be addressed by theoretical and laboratory study
The global energy balance of Titan
The global energy budget of planets and their moons is a critical factor to influence the climate change on these objects. Here we report the first measurement of the global emitted power of Titan. Long-term (2004â2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 ± 0.01) Ă 10^(14) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 6.0%
Science goals and new mission concepts for future exploration of Titanâs atmosphere, geology and habitability: titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON)
In response to ESAâs âVoyage 2050â announcement of opportunity, we propose an ambitious L-class mission to explore one of the most exciting bodies in the Solar System, Saturnâs largest moon Titan. Titan, a âworld with two oceansâ, is an organic-rich body with interior-surface-atmosphere interactions that are comparable in complexity to the Earth. Titan is also one of the few places in the Solar System with habitability potential. Titanâs remarkable nature was only partly revealed by the Cassini-Huygens mission and still holds mysteries requiring a complete exploration using a variety of vehicles and instruments. The proposed mission concept POSEIDON (Titan POlar Scout/orbitEr and In situ lake lander DrONe explorer) would perform joint orbital and in situ investigations of Titan. It is designed to build on and exceed the scope and scientific/technological accomplishments of Cassini-Huygens, exploring Titan in ways that were not previously possible, in particular through full close-up and in situ coverage over long periods of time. In the proposed mission architecture, POSEIDON consists of two major elements: a spacecraft with a large set of instruments that would orbit Titan, preferably in a low-eccentricity polar orbit, and a suite of in situ investigation components, i.e. a lake lander, a âheavyâ drone (possibly amphibious) and/or a fleet of mini-drones, dedicated to the exploration of the polar regions. The ideal arrival time at Titan would be slightly before the next northern Spring equinox (2039), as equinoxes are the most active periods to monitor still largely unknown atmospheric and surface seasonal changes. The exploration of Titanâs northern latitudes with an orbiter and in situ element(s) would be highly complementary in terms of timing (with possible mission timing overlap), locations, and science goals with the upcoming NASA New Frontiers Dragonfly mission that will provide in situ exploration of Titanâs equatorial regions, in the mid-2030s
Titan's temporal evolution in stratospheric trace gases near the poles
International audienceWe analyze spectra acquired by the Cassini/Composite Infrared Spectrometer (CIRS) at high resolution from October 2010 until September 2014 in nadir mode. Up until mid 2012, Titanâs Northern atmosphere exhibited the enriched chemical content found since the Voyager days (November 1980), with a peak around the Northern Spring Equinox (NSE) in 2009. Since then, we have observed the appearance at Titanâs south pole of several trace species for the first time, such as HC3N and C6H6, observed only at high northern latitudes before equinox. We investigate here latitudes poleward of 50°S and 50°N from 2010 (after the Southern Autumnal Equinox) until 2014. For some of the most abundant and longest-lived hydrocarbons (C2H2, C2H6 and C3H8) and CO2, the evolution in the past 4 years at a given latitude is not very significant within error bars especially until mid-2013. In more recent dates, these molecules show a trend for increase in the south. This trend is dramatically more pronounced for the other trace species, especially in 2013â2014, and at 70°S relative to 50°S. These two regions then demonstrate that they are subject to different dynamical processes in and out of the polar vortex region. For most species, we find higher abundances at 50°N compared to 50°S, with the exception of C3H8, CO2, C6H6 and HC3N, which arrive at similar mixing ratios after mid-2013. While the 70°N data show generally no change with a trend rather to a small decrease for most species within 2014, the 70°S results indicate a strong enhancement in trace stratospheric gases after 2012. The 663 cmâ1 HC3N and the C6H6 674 cmâ1 emission bands appeared in late 2011/early 2012 in the south polar regions and have since then exhibited a dramatic increase in their abundances. At 70°S HC3N, HCN and C6H6 have increased by 3 orders of magnitude over the past 3â4 years while other molecules, including C2H4, C3H4 and C4H2, have increased less sharply (by 1â2 orders of magnitude). This is a strong indication of the rapid and sudden buildup of the gaseous inventory in the southern stratosphere during 2013â2014, as expected as the pole moves deeper into winter shadow. Subsidence gases that accumulate in the absence of ultraviolet sunlight, evidently increased quickly since 2012 and some of them may be responsible also for the reported haze decrease in the north and its appearance in the south at the same time
- âŠ