33 research outputs found

    Autologous Endothelial Progenitor Cell-Seeding Technology and Biocompatibility Testing For Cardiovascular Devices in Large Animal Model

    Get PDF
    Implantable cardiovascular devices are manufactured from artificial materials (e.g. titanium (Ti), expanded polytetrafluoroethylene), which pose the risk of thromboemboli formation1,2,3. We have developed a method to line the inside surface of Ti tubes with autologous blood-derived human or porcine endothelial progenitor cells (EPCs)4. By implanting Ti tubes containing a confluent layer of porcine EPCs in the inferior vena cava (IVC) of pigs, we tested the improved biocompatibility of the cell-seeded surface in the prothrombotic environment of a large animal model and compared it to unmodified bare metal surfaces5,6,7 (Figure 1). This method can be used to endothelialize devices within minutes of implantation and test their antithrombotic function in vivo

    Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress

    Get PDF
    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6

    A Comparison Between the Teg 6s and Teg 5000 Analyzers to Assess Coagulation in Trauma Patients

    Get PDF
    BACKGROUND Trauma-induced coagulopathy is a major driver of mortality following severe injury. Viscoelastic goal-directed resuscitation can reduce mortality after injury. The TEG 5000 system is widely used for viscoelastic testing. However, the TEG 6s system incorporates newer technology, with encouraging results in cardiovascular interventions. The purpose of this study was to validate the TEG 6s system for use in trauma patients. METHODS Multicenter noninvasive observational study for method comparison conducted at 12 US Levels I and II trauma centers. Agreement between the TEG 6s and TEG 5000 systems was examined using citrated kaolin reaction time (CK.R), citrated functional fibrinogen maximum amplitude (CFF.MA), citrated kaolin percent clot lysis at 30 minutes (CK.LY30), citrated RapidTEG maximum amplitude (CRT.MA), and citrated kaolin maximum amplitude (CK.MA) parameters in adults meeting full or limited trauma team criteria. Blood was drawn ≤1 hour after admission. Assays were repeated in duplicate. Reliability (TEG 5000 vs. TEG 6s analyzers) and repeatability (interdevice comparison) was quantified. Linear regression was used to define the relationship between TEG 6s and TEG 5000 devices. RESULTS A total of 475 patients were enrolled. The cohort was predominantly male (68.6%) with a median age of 49 years. Regression line slope estimates (ß) and linear correlation estimates (p) were as follows: CK.R (ß = 1.05, ρ = 0.9), CFF.MA (ß = 0.99, ρ = 0.95), CK.LY30 (ß = 1.01, ρ = 0.91), CRT.MA (TEG 6s) versus CK.MA (TEG 5000) (ß = 1.06, ρ = 0.86) as well as versus CRT.MA (TEG 5000) (ß = 0.93, ρ = 0.93), indicating strong reliability between the devices. Overall, within-device repeatability was better for TEG 6s versus TEG 5000, particularly for CFF.MA and CK.LY30. CONCLUSION The TEG 6s device appears to be highly reliable for use in trauma patients, with close correlation to the TEG 5000 device and equivalent/improved within-device reliability. Given the potential advantages of using the TEG 6s device at the site of care, confirmation of agreement between the devices represents an important advance in diagnostic testing. LEVEL OF EVIDENCE Diagnostic test, level II

    TEG®6s system measures the contributions of both platelet count and platelet function to clot formation at the site-of-care

    No full text
    Knowledge of platelet count and function is key to ensuring appropriate hemostatic management. We hypothesized that the novel, portable TEG®6s coagulation assessment system could evaluate the contribution of both platelet count and function to clot formation. Whole-blood samples with variable platelet counts were prepared from healthy volunteers. Platelet function was adjusted using seven concentrations of abciximab and evaluated by light transmission aggregometry (LTA) with TRAP agonist. Maximum amplitude (MA), reaction time (R) and activated clotting time (ACT) were assessed in citrated kaolin (CK), CK with heparinase (CKH), citrated RapidTEG® (CRT), and citrated functional fibrinogen (CFF) assays. Positive correlations were observed between platelet count and CK.MA, CKH.MA, and CRT.MA (p 68% measured by LTA and quantified in the range 68.4–82% (CK), 69.4–88% (CKH), and 69.7–76% (CRT). This demonstrates the TEG®6s analyzer can accurately evaluate platelet count and function at the site-of-care

    Isolation of Functional Human Endothelial Cells from Small Volumes of Umbilical Cord Blood

    No full text
    Endothelial cells (ECs) isolated from endothelial progenitor cells in blood have great potential as a therapeutic tool to promote vasculogenesis and angiogenesis and treat cardiovascular diseases. However, current methods to isolate ECs are limited by a low yield with few colonies appearing during isolation. In order to utilize blood-derived ECs for therapeutic applications, a simple method is needed that can produce a high yield of ECs from small volumes of blood without the addition of animal-derived products. For the first time, we show that human ECs can be isolated without the prior separation of blood components through the technique of diluted whole blood incubation (DWBI) utilizing commercially available human serum. We isolated ECs from small volumes of blood (~10 mL) via DWBI and characterized them with flow cytometry, immunohistochemistry, and uptake of DiI-labeled acetylated low density lipoprotein (DiI-Ac-LDL). These ECs are functional as demonstrated by their ability to form tubular networks in Matrigel, adhere and align with flow under physiological fluid shear stress, and produce increased nitric oxide under fluid flow. An average of 7.0 ± 2.5 EC colonies that passed all functional tests described above were obtained per 10 mL of blood as compared to only 0.3 ± 0.1 colonies with the traditional method based on density centrifugation. The time until first colony appearance was 8.3 ± 1.2 days for ECs isolated with the DWBI method and 12 ± 1.4 days for ECs isolated with the traditional isolation method. A simplified method, such as DWBI, in combination with advances in isolation yield could enable the use of blood-derived ECs in clinical practice

    A Comparison Between the TEG 6s and TEG 5000 Analyzers to Assess Coagulation in Trauma Patients

    No full text
    BACKGROUND Trauma-induced coagulopathy is a major driver of mortality following severe injury. Viscoelastic goal-directed resuscitation can reduce mortality after injury. The TEG 5000 system is widely used for viscoelastic testing. However, the TEG 6s system incorporates newer technology, with encouraging results in cardiovascular interventions. The purpose of this study was to validate the TEG 6s system for use in trauma patients. METHODS Multicenter noninvasive observational study for method comparison conducted at 12 US Levels I and II trauma centers. Agreement between the TEG 6s and TEG 5000 systems was examined using citrated kaolin reaction time (CK.R), citrated functional fibrinogen maximum amplitude (CFF.MA), citrated kaolin percent clot lysis at 30 minutes (CK.LY30), citrated RapidTEG maximum amplitude (CRT.MA), and citrated kaolin maximum amplitude (CK.MA) parameters in adults meeting full or limited trauma team criteria. Blood was drawn ≤1 hour after admission. Assays were repeated in duplicate. Reliability (TEG 5000 vs. TEG 6s analyzers) and repeatability (interdevice comparison) was quantified. Linear regression was used to define the relationship between TEG 6s and TEG 5000 devices. RESULTS A total of 475 patients were enrolled. The cohort was predominantly male (68.6%) with a median age of 49 years. Regression line slope estimates (ß) and linear correlation estimates (p) were as follows: CK.R (ß = 1.05, ρ = 0.9), CFF.MA (ß = 0.99, ρ = 0.95), CK.LY30 (ß = 1.01, ρ = 0.91), CRT.MA (TEG 6s) versus CK.MA (TEG 5000) (ß = 1.06, ρ = 0.86) as well as versus CRT.MA (TEG 5000) (ß = 0.93, ρ = 0.93), indicating strong reliability between the devices. Overall, within-device repeatability was better for TEG 6s versus TEG 5000, particularly for CFF.MA and CK.LY30. CONCLUSION The TEG 6s device appears to be highly reliable for use in trauma patients, with close correlation to the TEG 5000 device and equivalent/improved within-device reliability. Given the potential advantages of using the TEG 6s device at the site of care, confirmation of agreement between the devices represents an important advance in diagnostic testing

    A Comparison Between the TEG 6s and TEG 5000 Analyzers to Assess Coagulation in Trauma Patients

    No full text
    BACKGROUND Trauma-induced coagulopathy is a major driver of mortality following severe injury. Viscoelastic goal-directed resuscitation can reduce mortality after injury. The TEG 5000 system is widely used for viscoelastic testing. However, the TEG 6s system incorporates newer technology, with encouraging results in cardiovascular interventions. The purpose of this study was to validate the TEG 6s system for use in trauma patients. METHODS Multicenter noninvasive observational study for method comparison conducted at 12 US Levels I and II trauma centers. Agreement between the TEG 6s and TEG 5000 systems was examined using citrated kaolin reaction time (CK.R), citrated functional fibrinogen maximum amplitude (CFF.MA), citrated kaolin percent clot lysis at 30 minutes (CK.LY30), citrated RapidTEG maximum amplitude (CRT.MA), and citrated kaolin maximum amplitude (CK.MA) parameters in adults meeting full or limited trauma team criteria. Blood was drawn ≤1 hour after admission. Assays were repeated in duplicate. Reliability (TEG 5000 vs. TEG 6s analyzers) and repeatability (interdevice comparison) was quantified. Linear regression was used to define the relationship between TEG 6s and TEG 5000 devices. RESULTS A total of 475 patients were enrolled. The cohort was predominantly male (68.6%) with a median age of 49 years. Regression line slope estimates (ß) and linear correlation estimates (p) were as follows: CK.R (ß = 1.05, ρ = 0.9), CFF.MA (ß = 0.99, ρ = 0.95), CK.LY30 (ß = 1.01, ρ = 0.91), CRT.MA (TEG 6s) versus CK.MA (TEG 5000) (ß = 1.06, ρ = 0.86) as well as versus CRT.MA (TEG 5000) (ß = 0.93, ρ = 0.93), indicating strong reliability between the devices. Overall, within-device repeatability was better for TEG 6s versus TEG 5000, particularly for CFF.MA and CK.LY30. CONCLUSION The TEG 6s device appears to be highly reliable for use in trauma patients, with close correlation to the TEG 5000 device and equivalent/improved within-device reliability. Given the potential advantages of using the TEG 6s device at the site of care, confirmation of agreement between the devices represents an important advance in diagnostic testing

    A Comparison Between the TEG 6s and TEG 5000 Analyzers to Assess Coagulation in Trauma Patients

    No full text
    BACKGROUND Trauma-induced coagulopathy is a major driver of mortality following severe injury. Viscoelastic goal-directed resuscitation can reduce mortality after injury. The TEG 5000 system is widely used for viscoelastic testing. However, the TEG 6s system incorporates newer technology, with encouraging results in cardiovascular interventions. The purpose of this study was to validate the TEG 6s system for use in trauma patients. METHODS Multicenter noninvasive observational study for method comparison conducted at 12 US Levels I and II trauma centers. Agreement between the TEG 6s and TEG 5000 systems was examined using citrated kaolin reaction time (CK.R), citrated functional fibrinogen maximum amplitude (CFF.MA), citrated kaolin percent clot lysis at 30 minutes (CK.LY30), citrated RapidTEG maximum amplitude (CRT.MA), and citrated kaolin maximum amplitude (CK.MA) parameters in adults meeting full or limited trauma team criteria. Blood was drawn ≤1 hour after admission. Assays were repeated in duplicate. Reliability (TEG 5000 vs. TEG 6s analyzers) and repeatability (interdevice comparison) was quantified. Linear regression was used to define the relationship between TEG 6s and TEG 5000 devices. RESULTS A total of 475 patients were enrolled. The cohort was predominantly male (68.6%) with a median age of 49 years. Regression line slope estimates (ß) and linear correlation estimates (p) were as follows: CK.R (ß = 1.05, ρ = 0.9), CFF.MA (ß = 0.99, ρ = 0.95), CK.LY30 (ß = 1.01, ρ = 0.91), CRT.MA (TEG 6s) versus CK.MA (TEG 5000) (ß = 1.06, ρ = 0.86) as well as versus CRT.MA (TEG 5000) (ß = 0.93, ρ = 0.93), indicating strong reliability between the devices. Overall, within-device repeatability was better for TEG 6s versus TEG 5000, particularly for CFF.MA and CK.LY30. CONCLUSION The TEG 6s device appears to be highly reliable for use in trauma patients, with close correlation to the TEG 5000 device and equivalent/improved within-device reliability. Given the potential advantages of using the TEG 6s device at the site of care, confirmation of agreement between the devices represents an important advance in diagnostic testing
    corecore