5,464 research outputs found
An electrochemical rebalance cell for Redox systems
An electrochemical rebalance cell for maintaining electrochemical balance, at the system level, of the acidified aqueous iron chloride and chromium chloride reactant solutions in the redox energy storage system was constructed and evaluated. The electrochemical reaction for the cathode is Fe(+3) + e(-) yields Fe(+2), and that for the anode is 1/2H2 yields H(+) + e(-). The iron (carbon felt) electrode and the hydrogen (platinized carbon) electrode are separated by an anion exchange membrane. The performance of the rebalance cell is discussed as well as the assembly of a single rebalance cell and multicell stacks. Various cell configurations were tested and the results are presented and discussed. The rebalance cell was also used to demonstrate its ability, as a preparative tool, for making high purity solutions of soluble reduced metal ionic species. Preparations of titanium, copper, vanadium and chromium ions in acidified solutions were evaluated
Studies on the clinical significance of nonesterified and total cholesterol in urine
Gas-liquid chromatographic determinations of nonesterified and total urinary cholesterol were performed in 137 normals, 264 patients with various internal diseases without evidence of neoplasias or diseases of the kidney or urinary tract, 497 patients with malignancies and 236 patients with diseases of the kidney, urinary tract infections or prostatic adenoma with residual urine. A normal range (mean±2 SD) of 0.2–2.2 mg/24 hours nonesterified cholesterol (NEC) and of 0.3–3.0 mg/24 hours total cholesterol (TC) was calculated.
Values of urinary cholesterol excretion were independent of age and sex and did not correlate with cholesterol levels in plasma. Patients with various internal diseases, without evidence of neoplasias nor diseases of the kidney or obstruction of the urinary tract, showed normal urinary cholesterol excretions, as did patients with infections of the urinary tract.
However, elevated urinary cholesterol was found in patients with diseases of the kidney or urinary tract obstruction (prostatic adenoma with residual urine), malignant diseases of the urogenital tract and metastasing carcinoma of the breast. In patients with other malignant diseases urinary cholesterol was usually normal.
Lesions of the urothelial cell membranes are considered to be the most likely cause of urinary cholesterol hyperexcretion. The clinical value of urinary cholesterol determinations as a possible screening test for urogenital carcinomas in unselected populations is limited by lacking specificity, expensive methodology and low prevalence of the mentioned carcinomas, although elevated urinary cholesterol excretions have been observed in early clinical stages of urogenital cancers
Robust quantum correlations in out-of-equilibrium matter-light systems
High precision macroscopic quantum control in interacting light-matter
systems remains a significant goal toward novel information processing and
ultra-precise metrology. We show that the out-of-equilibrium behavior of a
paradigmatic light-matter system (Dicke model) reveals two successive stages of
enhanced quantum correlations beyond the traditional schemes of near-adiabatic
and sudden quenches. The first stage features magnification of matter-only and
light-only entanglement and squeezing due to effective non-linear
self-interactions. The second stage results from a highly entangled
light-matter state, with enhanced superradiance and signatures of chaotic and
highly quantum states. We show that these new effects scale up consistently
with matter system size, and are reliable even in dissipative environments.Comment: 14 pages, 6 figure
New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions
We reveal universal dynamical scaling behavior across adiabatic quantum phase
transitions (QPTs) in networks ranging from traditional spatial systems (Ising
model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our
findings, which lie beyond traditional critical exponent analysis and adiabatic
perturbation approximations, are applicable even where excitations have not yet
stabilized and hence provide a time-resolved understanding of QPTs encompassing
a wide range of adiabatic regimes. We show explicitly that even though two
systems may traditionally belong to the same universality class, they can have
very different adiabatic evolutions. This implies more stringent conditions
need to be imposed than at present, both for quantum simulations where one
system is used to simulate the other, and for adiabatic quantum computing
schemes.Comment: 5 pages, 3 figures, plus supplementary material (6 pages, 1 figure
Large dynamic light-matter entanglement from driving neither too fast nor too slow
A significant problem facing next-generation quantum technologies is how to
generate and manipulate macroscopic entanglement in light and matter systems.
Here we report a new regime of dynamical light-matter behavior in which a
giant, system-wide entanglement is generated by varying the light-matter
coupling at \emph{intermediate} velocities. This enhancement is far larger and
broader-ranged than that occurring near the quantum phase transition of the
same model under adiabatic conditions. By appropriate choices of the coupling
within this intermediate regime, the enhanced entanglement can be made to
spread system-wide or to reside in each subsystem separately.Comment: 7 pages, 7 figure
Quantum Hysteresis in Coupled Light-Matter Systems
We investigate the non-equilibrium quantum dynamics of a canonical
light-matter system, namely the Dicke model, when the light-matter interaction
is ramped up and down through a cycle across the quantum phase transition. Our
calculations reveal a rich set of dynamical behaviors determined by the cycle
times, ranging from the slow, near adiabatic regime through to the fast, sudden
quench regime. As the cycle time decreases, we uncover a crossover from an
oscillatory exchange of quantum information between light and matter that
approaches a reversible adiabatic process, to a dispersive regime that
generates large values of light-matter entanglement. The phenomena uncovered in
this work have implications in quantum control, quantum interferometry, as well
as in quantum information theory.Comment: 9 pages and 4 figure
Pulsed Generation of Quantum Coherences and Non-classicality in Light-Matter Systems
We show that a pulsed stimulus can be used to generate many-body quantum
coherences in light-matter systems of general size. Specifically, we calculate
the exact real-time evolution of a driven, generic out-of-equilibrium system
comprising an arbitrary number N qubits coupled to a global boson field. A
novel form of dynamically-driven quantum coherence emerges for general N and
without having to access the empirically challenging strong-coupling regime.
Its properties depend on the speed of the changes in the stimulus.
Non-classicalities arise within each subsystem that have eluded previous
analyses. Our findings show robustness to losses and noise, and have potential
functional implications at the systems level for a variety of nanosystems,
including collections of N atoms, molecules, spins, or superconducting qubits
in cavities -- and possibly even vibration-enhanced light harvesting processes
in macromolecules.Comment: 9 pages, 4 figure
Functional advantages offered by many-body coherences in biochemical systems
Quantum coherence phenomena driven by electronic-vibrational (vibronic)
interactions, are being reported in many pulse (e.g. laser) driven chemical and
biophysical systems. But what systems-level advantage(s) do such many-body
coherences offer to future technologies? We address this question for pulsed
systems of general size N, akin to the LHCII aggregates found in green plants.
We show that external pulses generate vibronic states containing particular
multipartite entanglements, and that such collective vibronic states increase
the excitonic transfer efficiency. The strength of these many-body coherences
and their robustness to decoherence, increase with aggregate size N and do not
require strong electronic-vibrational coupling. The implications for energy and
information transport are discussed.Comment: arXiv admin note: text overlap with arXiv:1706.0776
- …