1,399 research outputs found

    OVII and OVIII line emission in the diffuse soft X-ray background: heliospheric and galactic contributions

    Full text link
    We study the 0.57 keV (O VII triplet) and 0.65 keV (O VIII) diffuse emission generated by charge transfer collisions between solar wind (SW) oxygen ions and interstellar H and He neutral atoms in the inner Heliosphere. These lines which dominate the 0.3-1.0 keV energy interval are also produced by hot gas in the galactic halo (GH) and possibly the Local Interstellar Bubble (LB). We developed a time-dependent model of the SW Charge-Exchange (SWCX) X-ray emission, based on the localization of the SW Parker spiral at each instant. We include input SW conditions affecting three selected fields, as well as shadowing targets observed with XMM-Newton, Chandra and Suzaku and calculate X-ray emission fot O VII and O VIII lines. We determine SWCX contamination and residual emission to attribute to the galactic soft X-ray background. We obtain ground level intensities and/or simulated lightcurves for each target and compare to X-ray data. The local 3/4 keV emission (O VII and O VIII) detected in front of shadowing clouds is found to be entirely explained by the CX heliospheric emission. No emission from the LB is needed at these energies. Using the model predictions we subtract the heliospheric contribution to the measured emission and derive the halo contribution. We also correct for an error in the preliminary analysis of the Hubble Deep Field North (HDFN).Comment: 21 pages (3 on-line), 10 figures (4 on-line), accepted for publication in Astronomy and Astrophysic

    The First Fermi-LAT SNR Catalog SNR and Cosmic Ray Implications

    Full text link
    Galactic cosmic ray (CRs) sources, classically proposed to be Supernova Remnants (SNRs), must meet the energetic particle content required by direct measurements of high energy CRs. Indirect gamma-ray measurements of SNRs with the Fermi Large Area Telescope (LAT) have now shown directly that at least three SNRs accelerate protons. With the first Fermi LAT SNR Catalog, we have systematically characterized the GeV gamma-rays emitted by 279 SNRs known primarily from radio surveys. We present these sources in a multiwavelength context, including studies of correlations between GeV and radio size, flux, and index, TeV index, and age and environment tracers, in order to better understand effects of evolution and environment on the GeV emission. We show that previously sufficient models of SNRs' GeV emission no longer adequately describe the data. To address the question of CR origins, we also examine the SNRs' maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.Comment: 8 pages, 10 figures; in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague (The Netherlands

    A new nearby pulsar wind nebula overlapping the RX J0852.0-4622 supernova remnant

    Get PDF
    Energetic pulsars can be embedded in a nebula of relativistic leptons which is powered by the dissipation of the rotational energy of the pulsar. The object PSR J0855-4644 is an energetic and fast-spinning pulsar (Edot = 1.1x10^36 erg/s, P=65 ms) discovered near the South-East rim of the supernova remnant (SNR) RX J0852.0-4622 (aka Vela Jr) by the Parkes multibeam survey. The position of the pulsar is in spatial coincidence with an enhancement in X-rays and TeV gamma-rays, which could be due to its putative pulsar wind nebula (PWN). The purpose of this study is to search for diffuse non-thermal X-ray emission around PSR J0855-4644 to test for the presence of a PWN and to estimate the distance to the pulsar. An X-ray observation was carried out with the XMM-Newton satellite to constrain the properties of the pulsar and its nebula. The absorption column density derived in X-rays from the pulsar and from different regions of the rim of the SNR was compared with the absorption derived from the atomic (HI) and molecular (12CO) gas distribution along the corresponding lines of sight to estimate the distance of the pulsar and of the SNR. The observation has revealed the X-ray counterpart of the pulsar together with surrounding extended emission thus confirming the existence of a PWN. The comparison of column densities provided an upper limit to the distance of the pulsar PSR J0855-4644 and the SNR RX J0852.0-4622 (d<900 pc). Although both objects are at compatible distances, we rule out that the pulsar and the SNR are associated. With this revised distance, PSR J0855-4644 is the second most energetic pulsar, after the Vela pulsar, within a radius of 1 kpc and could therefore contribute to the local cosmic-ray e-/e+ spectrum.Comment: 10 pages, 9 Figures. Accepted for publication in A&

    H.E.S.S. deeper observations on SNR RX J0852.0-4622

    Full text link
    Supernova Remnants (SNRs) are believed to be acceleration sites of Galactic cosmic rays. Therefore, deep studies of these objects are instrumental for an understanding of the high energy processes in our Galaxy. RX J0852.0-4622, also known as Vela Junior, is one of the few (4) shell-type SNRs resolved at Very High Energies (VHE; E > 100 GeV). It is one of the largest known VHE sources (~ 1.0 deg radius) and its flux level is comparable to the flux level of the Crab Nebula in the same energy band. These characteristics allow for a detailed analysis, shedding further light on the high-energy processes taking place in the remnant. In this document we present further details on the spatial and spectral morphology derived with an extended data set. The analysis of the spectral morphology of the remnant is compatible with a constant power-law photon index of 2.11 +/- 0.05_stat +/- 0.20_syst from the whole SNR in the energy range from 0.5 TeV to 7 TeV. The analysis of the spatial morphology shows an enhanced emission towards the direction of the pulsar PSR J0855-4644, however as the pulsar is lying on the rim of the SNR, it is difficult to disentangle both contributions. Therefore, assuming a point source, the upper limit on the flux of the pulsar wind nebula (PWN) between 1 TeV and 10 TeV, is estimated to be ~ 2% of the Crab Nebula flux in the same energy range

    Detection of TeV emission from the intriguing composite SNR G327.1-1.1

    Full text link
    The shock wave of supernova remnants (SNRs) and the wind termination shock in pulsar wind nebula (PWNe) are considered as prime candidates to accelerate the bulk of Galactic cosmic ray (CR) ions and electrons. The SNRs hosting a PWN (known as composite SNRs) provide excellent laboratories to test these hypotheses. The SNR G327.1-1.1 belongs to this category and exhibits a shell and a bright central PWN, both seen in radio and X-rays. Interestingly, the radio observations of the PWN show an extended blob of emission and a curious narrow finger structure pointing towards the offset compact X-ray source indicating a possible fast moving pulsar in the SNR and/or an asymmetric passage of the reverse shock. We report here on the observations, for a total of 45 hours, of the SNR G327.1-1.1 with the H.E.S.S. telescope array which resulted in the detection of TeV gamma-ray emission in spatial coincidence with the PWN.Comment: Proceeding of the 32nd ICRC, August 11-18 2011, Beijing, Chin

    X- and gamma-ray studies of HESS J1731-347 coincident with a newly discovered SNR

    Full text link
    In the survey of the Galactic plane conducted with H.E.S.S., many VHE gamma-ray sources were discovered for which no clear counterpart at other wavelengths could be identified. HESS J1731-347 initially belonged to this source class. Recently however, the new shell-type supernova remnant (SNR) G353.6-0.7 was discovered in radio data, positionally coinciding with the VHE source. We will present new X-ray observations that cover a fraction of the VHE source, revealing nonthermal emission that most likely can be interpreted as synchrotron emission from high-energy electrons. This, along with a larger H.E.S.S. data set which comprises more than twice the observation time used in the discovery paper, allows us to test whether the VHE source may indeed be attributed to shell-type emission from that new SNR. If true, this would make HESS J1731-347 a new object in the small but growing class of non-thermal shell-type supernova remnants with VHE emission.Comment: 4 pages, 5 figures, to appear in proceedings of the 31st ICRC, Lodz, Polan

    Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

    Get PDF
    The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3 PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy Υ-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs which can be identified as PeVatrons with CTA is estimated within a model for the evolution of SNRs. Additionally, the potential of a follow-up observation strategy under moonlight conditions for PeVatron searches is investigated. Statistical methods for the identification of PeVatrons are introduced, and realistic Monte-Carlo simulations of the response of the CTA observatory to the emission spectra from hadronic PeVatrons are performed. Based on simulations of a simplified model for the evolution for SNRs, the detection of a Υ-ray signal from in average 9 Galactic PeVatron SNRs is expected to result from the scan of the Galactic plane with CTA after 10 h of exposure. CTA is also shown to have excellent potential to confirm these sources as PeVatrons in deep observations wit ο(100) hours of exposure per source
    corecore