145 research outputs found

    The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators

    Get PDF
    The activation of CD4(+) T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolutio

    Molecular and cellular correlates of the CIITA-mediated inhibition of HTLV-2 Tax-2 transactivator function resulting in loss of viral replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MHC class II transactivator CIITA inhibits the function of HTLV-2 Tax-2 viral transactivator and, consequently, the replication of the virus in infected cells. Moreover overexpression of the nuclear factor NF-YB, that cooperates with CIITA for the expression of MHC class II genes, results also in inhibition of Tax-2 transactivation. The purpose of this investigation was to assess the cellular and molecular basis of the CIITA-mediated inhibition on Tax-2, and the relative role of NF-YB in this phenomenon.</p> <p>Methods</p> <p>By co-immunoprecipitation of lysates from 293T cells cotransfected with CIITA or fragments of it, and Tax-2 it was assessed whether the two factors interact <it>in vivo</it>. A similar approach was used to assess Tax-2-NF-YB interaction. In parallel, deletion fragments of CIITA were tested for the inhibition of Tax-2-dependent HTLV-2 LTR-luciferase transactivation. Subcellular localization of CIITA and Tax-2 was investigated by immunofluorescence and confocal microscopy.</p> <p>Results</p> <p>CIITA and Tax-2 interact <it>in vivo </it>through at least two independent regions, at the 1-252 N-term and at the 410-1130 C-term, respectively. Interestingly only the 1-252 N-term region mediates Tax-2 functional inhibition. CIITA and Tax-2 are localized both in the cytoplasm and in the nucleus, when separately expressed. Instead, when coexpressed, most of Tax-2 colocalize with CIITA in cytoplasm and around the nuclear membrane. The Tax-2 minor remaining nuclear portion also co-localizes with CIITA. Interestingly, when CIITA nucleus-cytoplasm shuttling is blocked by leptomycin B treatment, most of the Tax-2 molecules are also blocked and co-localize with CIITA in the nucleus, suggesting that CIITA-Tax-2 binding does not preclude Tax-2 entry into the nucleus.</p> <p>Finally, the nuclear factor NF-YB, also strongly binds to Tax-2. Notably, although endogenous NF-YB does not inhibit Tax-2-dependent HTLV-2 LTR transactivation, it still binds to Tax-2, and in presence of CIITA, this binding seems to increase.</p> <p>Conclusions</p> <p>These results strongly suggest that CIITA inhibit Tax-2 by binding the viral transactivator both directly or through a tripartite interaction with NF-YB in. CIITA is therefore a viral restriction factor for HTLV-2 and this open the possibility to control HTLV-2 viral replication and spreading by the controlled induction of CIITA in infected cells</p

    HTLV-1 infection and pathogenesis: new insights from cellular and animal models

    Get PDF
    Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus-host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients

    Boosting the MHC class II-restricted tumor antigen presentation to CD4+ T helper cells: A critical issue for triggering protective immunity and re-orienting the tumor microenvironment toward an anti-tumor state

    Get PDF
    6noopenAlthough the existence of an immune response against tumor cells is well documented, the fact that tumors take off in cancer patients indicates that neoplastic cells can circumvent this response. Over the years many investigators have described strategies to rescue the anti-tumor immune response with the aim of creating specific and long-lasting protection against the disease. When exported to human clinical settings, these strategies have revealed in most cases a very limited, if any, positive outcome. We believe that the failure is mostly due to the inadequate triggering of the CD4+ T helper (TH) cell arm of the adaptive immunity, as TH cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells. In this review, we focus on novel strategies that by stimulating MHC class II-restricted activation of TH cells generate a specific and persistent adaptive immunity against the tumor. This point is of critical importance for both preventive and therapeutic anti-tumor vaccination protocols, because adaptive immunity with its capacity to produce specific, long-lasting protection and memory responses is indeed the final goal of vaccination. We will discuss data from our as well as other laboratories which strongly suggest that triggering a specific and persistent anti-tumor CD4+ TH cell response stably modify not only the tumor microenvironment but also tumor-dependent extratumor microenvironments by eliminating and/or reducing the blood-derived tumor infiltrating cells that may have a pro-tumor growth function such as regulatory CD4+/CD25+ T cells and myeloid-derived-suppressor cells. Within this frame, therefore, we believe that the establishment of a pro-tumor environment is not the cause but simply the consequence of the tumor strategy to primarily counteract components of the adaptive cellular immunity, particularly TH lymphocytes.openAccolla, R.S.; Lombardo, L.; Abdallah, R.; Raval, G.; Forlani, G.; Tosi, G.Accolla, Roberto; Lombardo, L.; Abdallah, R.; Raval, G.; Forlani, Greta; Tosi, Giovann

    Time-Resolved F\uf6rster Resonance Energy Transfer Analysis of Single-Nucleotide Polymorphisms: Towards Molecular Typing of Genes on Non-Purified and Non-PCR-Amplified DNA

    Get PDF
    Quantitative assessment of the fluorescence resonance energy transfer (FRET) efficiency between chromophores labeling the opposite ends of gene-specific oligonucleotide probes is a powerful tool to detect DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, time-correlated single-photon counting. Recently, we probed by such technique the highly polymorphic DQB1 human gene. Namely, by using a single oligonucleotide probe and acting on non-amplified DNA samples contained in untreated cell extracts, we demonstrated the ability of pursuing unambiguous recognition of subjects bearing the homozygous DQB1-0201 genotype by exploiting the subtle, yet statistically significant, structural differences between the duplex formed by the probe with DQB1-0201 on the one end and duplexes formed with any of the other alleles, on the other end. The relevance of homozygous DQB1-0201 genotype recognition reseeds in the fact that the latter is overexpressed in subjects affected by insulin-dependent diabetes mellitus in north-eastern Italy. In this article we review our preceding achievements and report on additional in-vitro experiments aimed at characterizing the duplexes obtained by annealing of the DQB1 allelic variants with a second oligonucleotide probe, with the final scope to achieve full genotyping of DQB1 on raw DNA samples by means of cross-combination of the FRET responses of both probes
    corecore