19 research outputs found
Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways.
The molecular and cellular processes that lead to renal damage and to the heterogeneity of lupus nephritis (LN) are not well understood. We applied single-cell RNA sequencing (scRNA-seq) to renal biopsies from patients with LN and evaluated skin biopsies as a potential source of diagnostic and prognostic markers of renal disease. Type I interferon (IFN)-response signatures in tubular cells and keratinocytes distinguished patients with LN from healthy control subjects. Moreover, a high IFN-response signature and fibrotic signature in tubular cells were each associated with failure to respond to treatment. Analysis of tubular cells from patients with proliferative, membranous and mixed LN indicated pathways relevant to inflammation and fibrosis, which offer insight into their histologic differences. In summary, we applied scRNA-seq to LN to deconstruct its heterogeneity and identify novel targets for personalized approaches to therapy
The immune cell landscape in kidneys of patients with lupus nephritis.
Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies
Meta-Analysis of the Alzheimer\u27s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models.
We present a consensus atlas of the human brain transcriptome in Alzheimer\u27s disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington\u27s disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies
Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue
Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers
Single cell analysis of RA synovial B cells reveals a dynamic spectrum of ectopic lymphoid B cell activation and hypermutation characterized by NR4A nuclear receptor expression
ABSTRACT Ectopic lymphoid structures (ELS) can develop in rheumatoid arthritis (RA) synovial tissue, but the precise pathways of B cell activation and selection are not well understood. Here, we identified a unique B cell population in the synovium characterized by co-expression of a family of orphan nuclear receptors, NR4A1 (also known as NUR77), NR4A2 (NURR1) and NR4A3 (NOR1), that is highly enriched at both early and late stages of RA. NR4A B cells are rare in healthy peripheral blood, RA blood, and SLE kidney, but share markers with blood transcriptomic signatures that peak during RA disease flare. Using combined single cell transcriptomics and B cell receptor (BCR) sequencing, we demonstrate that NR4A synovial B cells have an activated transcriptomic profile that significantly overlaps with germinal center (GC) light zone (LZ) B cells and an accrual of somatic hypermutation that correlates with loss of naïve B cell status. NR4A B cells uniquely co-express lymphotoxin β and IL6, supporting important functions in ELS promotion and pro-inflammatory cytokine production. Further, the presence of shared clones in this activated B cell state and NR4A expressing synovial plasma cells (PC) and the rapid up-regulation with BCR stimulation points to in situ differentiation. Taken together, we identified a dynamic progression of B cell activation in RA synovial ELS, with NR4A transcription factors having an important role in antigen activation and local adaptive immune responses. One sentence summary B cells in the rheumatoid arthritis synovium undergo a spectrum of in situ activation, with the NR4A family of transcription factors having an important role in antigen stimulation, local adaptive immunity, and pathological B cell responses
Recommended from our members
POS0297 PROTEOMIC ANALYSIS OF HISTOLOGICAL LESIONS LUPUS NEPHRITIS IDENTIFIES AN INFLAMMATORY SIGNATURE OF FIBROUS CRESCENTS
Background We employed urine proteomics to define the molecular signatures associated with the histological features quantified by the NIH activity and chronicity indices. Objectives We employed urine proteomics to define the molecular signatures associated with the histological features quantified by the NIH activity and chronicity indices. Methods Glomerular and interstitial lesions in lupus nephritis were quantified (scored 0-3) based on the revised 2018 International Society of Nephrology/Renal Pathology Society (ISN/RPS) classification for lupus nephritis and the modified NIH scoring system by a central renal pathologist (JH). Urinary proteins (1200 biomarkers, RayBiotech Kiloplex) were quantified in urine samples collected on the day of (73%) or within 3 weeks of (27%) the diagnostic kidney biopsy. Proteomic signatures of each lesion were defined based on Spearman correlations of each urine protein with each pathologic lesion. Results Ninety-one biopsies were included: 32 (35%) with pure proliferative LN, 33 (36%) with pure membranous LN, and 26 (29%) with mixed LN. The 5 most correlated urinary proteins and each pathologic feature are summarized in Figure 1A-B. Most lesions in the activity or chronicity indices shared a similar signature within their respective index. In contrast, fibrous crescents displayed an inflammatory signature (CD73, MMP9, MIP1b, and IL-8) despite being part of the NIH chronicity index. Hierarchical clustering based on proteomic signatures revealed that fibrous crescents were more similar to activity-related lesions (Figure 1C). Interstitial inflammation (activity) was correlated with biomarkers associated with both active and chronic lesions.Figure 1. Conclusion Although fibrous crescents are considered inactive lesions that follow crescentic glomerulonephritis, urine proteomics revealed inflammatory activity associated with fibrous crescents. Several cell types such macrophages, fibroblasts, neutrophils, lymphocytes, and epithelial cells are critical in the formation of crescents. Higher levels of CD73, IL-8 and MMP9 indicate the presence of an inflammatory response involved in glomerular remodeling after extra-capillary proliferation that have an important role in kidney damage. The presence of fibrous crescents in kidney biopsies may indicate ongoing potentially treatable inflammation. Interstitial inflammation, which is linked to worse clinical outcomes, showed a distinct proteomic signature combining both activity and chronicity. A better understanding of the pathophysiology of processes including fibrous crescents and interstitial inflammation is needed to tailor treatment of these pathways leading to chronic damage. REFERENCES: NIL. Acknowledgements: NIL. Disclosure of Interests None declared
Recommended from our members
Urine Proteomics and Renal Single‐Cell Transcriptomics Implicate Interleukin‐16 in Lupus Nephritis
ObjectiveCurrent lupus nephritis (LN) treatments are effective in only 30% of patients, emphasizing the need for novel therapeutic strategies. We undertook this study to develop mechanistic hypotheses and explore novel biomarkers by analyzing the longitudinal urinary proteomic profiles in LN patients undergoing treatment.MethodsWe quantified 1,000 urinary proteins in 30 patients with LN at the time of the diagnostic renal biopsy and after 3, 6, and 12 months. The proteins and molecular pathways detected in the urine proteome were then analyzed with respect to baseline clinical features and longitudinal trajectories. The intrarenal expression of candidate biomarkers was evaluated using single-cell transcriptomics of renal biopsy sections from LN patients.ResultsOur analysis revealed multiple biologic pathways, including chemotaxis, neutrophil activation, platelet degranulation, and extracellular matrix organization, which could be noninvasively quantified and monitored in the urine. We identified 237 urinary biomarkers associated with LN, as compared to controls without systemic lupus erythematosus. Interleukin-16 (IL-16), CD163, and transforming growth factor β mirrored intrarenal nephritis activity. Response to treatment was paralleled by a reduction in urinary IL-16, a CD4 ligand with proinflammatory and chemotactic properties. Single-cell RNA sequencing independently demonstrated that IL16 is the second most expressed cytokine by most infiltrating immune cells in LN kidneys. IL-16-producing cells were found at key sites of kidney injury.ConclusionUrine proteomics may profoundly change the diagnosis and management of LN by noninvasively monitoring active intrarenal biologic pathways. These findings implicate IL-16 in LN pathogenesis, designating it as a potentially treatable target and biomarker
Recommended from our members
Urine Proteomics and Renal Single-Cell Transcriptomics Implicate Interleukin-16 in Lupus Nephritis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/172318/1/art42023.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/172318/2/art42023-sup-0001-Disclosureform.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/172318/3/art42023_am.pd