58 research outputs found
Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder
Pharmacological treatment of several diseases, such as attention-deficit hyperactivity disorder (ADHD), presents marked variability in efficiency and its adverse effects. The genotyping of specific single nucleotide polymorphisms (SNPs) can support the prediction of responses to drugs and the genetic risk of presenting comorbidities associated with ADHD. This study presents two rapid and affordable microarray-based strategies to discriminate three clinically important SNPs in genes ADRA2A, SL6CA2, and OPRM1 (rs1800544, rs5569, and rs1799971, respectively). These approaches are allele-specific oligonucleotide hybridization (ASO) and a combination of allele-specific amplification (ASA) and solid-phase hybridization. Buccal swab and blood samples taken from ADHD patients and controls were analyzed by ASO, ASA, and a gold-reference method. The results indicated that ASA is superior in genotyping capability and analytical performance.This research has been funded through projects FEDER MINECO INNPACTO IPT-2011-1132-010000, CTQ/2013/45875R, and PrometeoII/2014/040 (GVA).Tortajada-Genaro, LA.; Mena-Mollá, S.; Niñoles Rodenes, R.; Puigmule, M.; Viladevall, L.; Maquieira Catala, Á. (2016). Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder. Analytical and Bioanalytical Chemistry. 408(9):2339-2345. https://doi.org/10.1007/s00216-016-9332-3S233923454089Cortese S. The neurobiology and genetics of Attention-Deficit/Hyperactivity Disorder (ADHD): what every clinician should know. Eur J Paediatr Neurol. 2012;16:422–33.Contini V, Rovaris DL, Victor MM, Grevet EH, Rohde LA, Bau CH. Pharmacogenetics of response to methylphenidate in adult patients with attention-deficit/hyperactivity disorder (ADHD): a systematic review. Eur Neuropsychopharmacol. 2013;23:555–60.Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006;58(3):521–90.Abul-Husn NS, Obeng AO, Sanderson SC, Gottesman O, Scott SA. Implementation and utilization of genetic testing in personalized medicine. Pharmacogenomics Pers Med. 2014;7:227.Altman RB, Flockhart D, Goldstein DB, editors. Principles of pharmacogenetics and pharmacogenomics. Cambridge: Cambridge University Press; 2012.Hawi Z, Cummins TDR, Tong J, Johnson B, Lau R, Samarrai W, et al. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol Psychiatry. 2015;20:289–97.Limaye N. Pharmacogenomics, Theranostics and Personalized Medicine-the complexities of clinical trials: challenges in the developing world. Appl Transl Genomics. 2013;2:17–21.Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013;15:258–67.Kim S, Misra A. PharmGKB: the Pharmacogenomics Knowledge Base. Annu Rev Biomed Eng. 2007;9:289–320.Lucarelli F, Tombelli S, Minunni M, Marrazza G, Mascini M. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal Chim Acta. 2008;609:139–59.Knez K, Spasic D, Janssen KP, Lammertyn J. Emerging technologies for hybridization based single nucleotide polymorphism detection. Analyst. 2014;139:353–70.Choi JY, Kim YT, Byun JY, Ahn J, Chung S, Gweon DG, et al. Integrated allele-specific polymerase chain reaction–capillary electrophoresis microdevice for single nucleotide polymorphism genotyping. Lab Chip. 2012;12:5146–54.Ragoussis J. Genotyping Technologies for Genetic Research. Annu Rev Genomics Hum Genet. 2009;10:117–33.Sethi D, Gandhi RP, Kuma P, Gupta KC. Chemical strategies for immobilization of oligonucleotides. Biotechnol J. 2009;4:1513–29.Bañuls MJ, Morais SB, Tortajada-Genaro LA, Maquieira A. Microarray Developed on Plastic Substrates. Microarray Technology: Methods and Applications, 2016; 37-51.Tortajada-Genaro LA, Rodrigo A, Hevia E, Mena S, Niñoles R, Maquieira A. Microarray on digital versatile disc for identification and genotyping of Salmonella and Campylobacter in meat products. Anal Bioanal Chem. 2015;407:7285–94.Kieling C, Genro JP, Hutz MH, Rohde LA. A current update on ADHD pharmacogenomics. Pharmacogenomics. 2010;11:407–19.Kim BN, Kim JW, Cummins TD, Bellgrove MA, Hawi Z, Hong SB, et al. Norepinephrine genes predict response time variability and methylphenidate-induced changes in neuropsychological function in attention deficit hyperactivity disorder. J Clin Psychopharmacol. 2013;33:356–62.Carpentier PJ, Arias Vasquez A, Hoogman M, Onnink M, Kan CC, Kooij JJS, et al. Shared and unique genetic contributions to attention deficit/hyperactivity disorder and substance use disorders: A pilot study of six candidate genes. Eur Neuropsychopharmacol. 2013;23:448–57.Zhang Y, Haraksingh R, Grubert F, Abyzov A, Gerstein M, Weissman S, et al. Child development and structural variation in the human genome. Child Dev. 2013;84:34–48.Asari M, Watanabe S, Matsubara K, Shiono H, Shimizu K. Single nucleotide polymorphism genotyping by mini-primer allele-specific amplification with universal reporter primers for identification of degraded DNA. Anal Biochem. 2009;386:85–90.Choi JY, Kim YT, Ahn J, Kim KS, Gweon DG, Seo TS. Integrated allele-specific polymerase chain reaction–capillary electrophoresis microdevice for single nucleotide polymorphism genotyping. Biosens Bioelectron. 2012;35:327–34.Konstantou JK, Ioannou PC, Christopoulos TK. Dual-allele dipstick assay for genotyping single nucleotide polymorphisms by primer extension reaction. Eur J Hum Genet. 2009;17:105–11.Sebastian T, Cooney CG, Parker J, Qu P, Perov A, Golova JB, et al. Integrated amplification microarray system in a lateral flow cell for warfarin genotyping from saliva. Clin Chim Acta. 2014;429:198–205
Interaction proteomics of synapse protein complexes
The brain integrates complex types of information, and executes a wide range of physiological and behavioral processes. Trillions of tiny organelles, the synapses, are central to neuronal communication and information processing in the brain. Synaptic transmission involves an intricate network of synaptic proteins that forms the molecular machinery underlying transmitter release, activation, and modulation of transmitter receptors and signal transduction cascades. These processes are dynamically regulated and underlie neuroplasticity, crucial to learning and memory formation. In recent years, interaction proteomics has increasingly been used to elucidate the constituents of synaptic protein complexes. Unlike classic hypothesis-based assays, interaction proteomics detects both known and novel interactors without bias. In this trend article, we focus on the technical aspects of recent proteomics to identify synapse protein complexes, and the complementary methods used to verify the protein–protein interaction. Moreover, we discuss the experimental feasibility of performing global analysis of the synapse protein interactome
Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins
Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care
- …