65 research outputs found

    Kemandirian Pangan: Cadangan Publik, Stabilisasi Harga, Dan Diversifikasi

    Full text link
    Cadangan pangan menghadapi permasalahan dengan adanya kenaikan harga BBM dan pada saat yang bersamaan stok pangan semakin rendah. Suplai pangan terus menurun dan tingginya ketidakpastian akibat rendahnya investasi dan pengaruh pemanasan global. Makalah ini bermaksud untuk mendiskusikan kaitan kemandirian pangan dengan cadangan pangan, stabilisasi harga pangan khususnya gabah/beras. Kemandirian pangan juga terkait dengan diversifikasi produksi dan konsumsi pangan, serta peran pemerintah lokal dalam cadangan pangan publik. Beberapa masalah yang dibahas adalah respon negara berkembang terhadap krisis pangan dan bagaimana respon Indonesia secara khusus. Khusus respon Indonesia, makalah mencoba mengungkapkan kemampuan Indonesia dalam meredam kenaikan harga pangan dalam negeri, intervensi pasar dan stabilisasi harga, pengadaan publik, stok dan cadangan pangan pemerintah. Makalah ini juga membahas kemandirian pangan yang dirancang dalam jangka pendek dan umumnya untuk merespon krisis pangan. Sementara kemandirian pangan untuk jangka panjang dan berkelanjutan melalui strategi diversifikasi, baik produksi maupun konsumsi pangan

    Wavelet-based short-term load forecasting using optimized anfis

    Get PDF
    This paper focuses on forecasting electric load consumption using optimized Adaptive Neuro-Fuzzy inference System (ANFIS). It employs the use of Particle Swarm Optimization (PSO) to optimize ANFIS, with aim of improving its speed and accuracy. It determines the minimum error from the ANFIS error function and thus propagates it to the premise part. Wavelet transform was used to decompose the input variables using Daubechies 2 (db2). The purpose is to reduce outliers as small as possible in the forecasting data. The data was decomposed in to one approximation coefficients and three details coefficients. The combined Wavelet-PSO-ANFIS model was tested using weather and load data of Nova Scotia province. It was found that the model can perform more than Genetic Algorithm (GA) optimized ANFIS and traditional ANFIS, which is been optimized by Gradient Decent (GD). Mean Absolute Percentage Error (MAPE) was used to measure the accuracy of the model. The model gives lower MAPE than the other two models, and is faster in terms of speed of convergence

    Calibration of ZMPT101B voltage sensor module using polynomial regression for accurate load monitoring

    Get PDF
    Smart Electricity is quickly developing as the results of advancements in sensor technology. The accuracy of a sensing device is the backbone of every measurement and the fundamental of every electrical quantity measurement is the voltage and current sensing. The sensor calibration in the context of this research means the marking or scaling of the voltage sensor so that it can present accurate sampled voltage from the ADC output using appropriate algorithm. The peakpeak input voltage (measured with a standard FLUKE 115 meter) to the sensor is correlated with the peak-peak ADC output of the sensor using 1 to 5th order polynomial regression, in order to determine the best fitting relationship between them. The arduino microcontroller is used to receive the ADC conversion and is also programmed to calculate the root mean square value of the supply voltage. The analysis of the polynomials shows that the third order polynomial gives the best relationship between the analog input and ADC output. The accuracy of the algorithm is tested in measuring the root mean square values of the supply voltage using instantaneous voltage calculation and peak-peak voltage methods. The error in the measurement is less than 1% in the peak-peak method and less than 2.5% in the instantaneous method for voltage measurements above 50V AC, which is very good for measurements in utility. Therefore, the proposed calibration method will facilitate more accurate voltage and power computing for researchers and designers especially in load monitoring where the applied voltage is 240V or 120V ranges

    Recent approaches and applications of non-intrusive load monitoring

    Get PDF
    The Appliance Load Monitoring is vital in every energy consuming system be it commercial, residential or industrial in nature. Traditional load monitoring system, which used to be intrusive in nature require the installation of sensors to every load of interest which makes the system to be costly, time consuming and complex. Nonintrusive load monitoring (NILM) system uses the aggregated measurement at the utility service entry to identify and disaggregate the appliances connected in the building, which means only one set of sensors is required and it does not require entrance into the consumer premises. We presented a study in this paper providing a comprehensive review of the state of art of NILM, the different methods applied by researchers so far, before concluding with the future research direction, which include automatic home energy saving using NILM. The study also found that more efforts are needed from the researchers to apply NILM in appliance energy management, for example a Home Energy Management System (HEMS)

    A statistical data selection approach for short-term load forecasting using optimized ANFIS

    Get PDF
    Volume of the forecasting data and good data analysis are the key factors that influence the accuracy of forecasting algorithm because it depends on data identification and model parameters. This paper focuses on data selection approach for short-term load forecasting. It involves formulating data selection algorithm to identify factors (variables) that influence energy demand at utility level. Correlation Analysis (CA) and Hypothesis Test (HT) are used in the selection, where Wavelet Transform (WT) is applied to bridge the gap between the forecasting variables. This results to three groups of data; data without CA, HT and WT, data with CA, HT but without WT and data with CA, HT and WT. An optimized adaptive neuro-fuzzy inference system (ANFIS) using Cuckoo Search Algorithm (CS) is used to conduct the forecasting. The essence is to reduce the computational difficulty associated with the gradient descent (GD) algorithm in traditional ANFIS. With the three data groups, it is observed that CHW data can give satisfactory results more than the NCNHNW and NCNHW data. Also the numerical results shows that CHW data selection approach can give a MAPE of 0.63 against the bench-mark approach with MAPE of 3.55. This indicates that it is good practice to select the actual data and process it before the forecasting

    A Comparison of Assays for Accurate Copy Number Measurement of the Low-Affinity Fc Gamma Receptor Genes FCGR3A and FCGR3B

    Get PDF
    The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (RT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method’s performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions. Funding: Bill & Melinda Gates Foundation

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore