14 research outputs found

    Tuning heterologous glucan biosynthesis in yeast to understand and exploit plant starch diversity

    Full text link
    Background: Starch, a vital plant-derived polysaccharide comprised of branched glucans, is essential in nutrition and many industrial applications. Starch is often modified post-extraction to alter its structure and enhance its functionality. Targeted metabolic engineering of crops to produce valuable and versatile starches requires knowledge of the relationships between starch biosynthesis, structure, and properties, but systematic studies to obtain this knowledge are difficult to conduct in plants. Here we used Saccharomyces cerevisiae as a testbed to dissect the functions of plant starch biosynthetic enzymes and create diverse starch-like polymers. Results: We explored yeast promoters and terminators to tune the expression levels of the starch-biosynthesis machinery from Arabidopsis thaliana. We systematically modulated the expression of each starch synthase (SS) together with a branching enzyme (BE) in yeast. Protein quantification by parallel reaction monitoring (targeted proteomics) revealed unexpected effects of glucan biosynthesis on protein abundances but showed that the anticipated broad range of SS/BE enzyme ratios was maintained during the biosynthetic process. The different SS/BE ratios clearly influenced glucan structure and solubility: The higher the SS/BE ratio, the longer the glucan chains and the more glucans were partitioned into the insoluble fraction. This effect was irrespective of the SS isoform, demonstrating that the elongation/branching ratio controls glucan properties separate from enzyme specificity. Conclusions: Our results provide a quantitative framework for the in silico design of improved starch biosynthetic processes in plants. Our study also exemplifies a workflow for the rational tuning of a complex pathway in yeast, starting from the selection and evaluation of expression modules to multi-gene assembly and targeted protein monitoring during the biosynthetic process. Keywords: Amylopectin structure; Arabidopsis thaliana; Heterologous expression in yeast; Parallel reaction monitoring, Proteomics; Starch biosynthesis; YFP reporter

    Evolutionary innovations in starch metabolism

    No full text
    ISSN:1369-5266ISSN:1879-035

    Tuning heterologous glucan biosynthesis in yeast to understand and exploit plant starch diversity

    No full text
    Background Starch, a vital plant-derived polysaccharide comprised of branched glucans, is essential in nutrition and many industrial applications. Starch is often modified post-extraction to alter its structure and enhance its functionality. Targeted metabolic engineering of crops to produce valuable and versatile starches requires knowledge of the relationships between starch biosynthesis, structure, and properties, but systematic studies to obtain this knowledge are difficult to conduct in plants. Here we used Saccharomyces cerevisiae as a testbed to dissect the functions of plant starch biosynthetic enzymes and create diverse starch-like polymers. Results We explored yeast promoters and terminators to tune the expression levels of the starch-biosynthesis machinery from Arabidopsis thaliana. We systematically modulated the expression of each starch synthase (SS) together with a branching enzyme (BE) in yeast. Protein quantification by parallel reaction monitoring (targeted proteomics) revealed unexpected effects of glucan biosynthesis on protein abundances but showed that the anticipated broad range of SS/BE enzyme ratios was maintained during the biosynthetic process. The different SS/BE ratios clearly influenced glucan structure and solubility: The higher the SS/BE ratio, the longer the glucan chains and the more glucans were partitioned into the insoluble fraction. This effect was irrespective of the SS isoform, demonstrating that the elongation/branching ratio controls glucan properties separate from enzyme specificity. Conclusions Our results provide a quantitative framework for the in silico design of improved starch biosynthetic processes in plants. Our study also exemplifies a workflow for the rational tuning of a complex pathway in yeast, starting from the selection and evaluation of expression modules to multi-gene assembly and targeted protein monitoring during the biosynthetic process.ISSN:1741-700

    STARCH SYNTHASE5, a Noncanonical Starch Synthase-Like Protein, Promotes Starch Granule Initiation in Arabidopsis

    No full text
    What determines the number of starch granules in plastids is an enigmatic aspect of starch metabolism. Several structurally and functionally diverse proteins have been implicated in the granule initiation process in Arabidopsis (Arabidopsis thaliana), with each protein exerting a varying degree of influence. Here, we show that a conserved starch synthase-like protein, STARCH SYNTHASE5 (SS5), regulates the number of starch granules that form in Arabidopsis chloroplasts. Among the starch synthases, SS5 is most closely related to SS4, a major determinant of granule initiation and morphology. However, unlike SS4 and the other starch synthases, SS5 is a noncanonical isoform that lacks catalytic glycosyltransferase activity. Nevertheless, loss of SS5 reduces starch granule numbers that form per chloroplast in Arabidopsis, and ss5 mutant starch granules are larger than wild-type granules. Like SS4, SS5 has a conserved putative surface binding site for glucans and also interacts with MYOSIN-RESEMBLING CHLOROPLAST PROTEIN, a proposed structural protein influential in starch granule initiation. Phenotypic analysis of a suite of double mutants lacking both SS5 and other proteins implicated in starch granule initiation allows us to propose how SS5 may act in this process. © 2020 American Society of Plant Biologists.ISSN:1532-298XISSN:1531-298XISSN:1040-465

    MFP1 defines the subchloroplast location of starch granule initiation

    No full text
    Starch is one of the major carbohydrate storage compounds in plants. The biogenesis of starch granules starts with the formation of initials, which subsequently expand into granules. Several coiled-coil domain-containing proteins have been previously implicated with the initiation process, but the mechanisms by which they act remain largely elusive. Here, we demonstrate that one of these proteins, the thylakoid-associated MAR-BINDING FILAMENT-LIKE PROTEIN 1 (MFP1), specifically determines the subchloroplast location of initial formation. The expression of MFP1 variants “mis”-targeted to specific locations within chloroplasts in Arabidopsis results in distinctive shifts in not only how many but also where starch granules are formed. Importantly, “re” localizing MFP1 to the stromal face of the chloroplast’s inner envelope is sufficient to generate starch granules in this aberrant position. These findings provide compelling evidence that a single protein MFP1 possesses the capacity to direct the initiation and biosynthesis machinery of starch granules.ISSN:0027-8424ISSN:1091-649

    BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation

    No full text
    b-Amylases (BAMs) are key enzymes of transitory starch degradation in chloroplasts, a process that buffers the availability of photosynthetically fixed carbon over the diel cycle to maintain energy levels and plant growth at night. However, during vascular plant evolution, the BAM gene family diversified, giving rise to isoforms with different compartmentation and bio logical activities. Here, we characterized BETA-AMYLASE 9 (BAM9) of Arabidopsis (Arabidopsis thaliana). Among the BAMs, BAM9 is most closely related to BAM4 but is more widely conserved in plants. BAM9 and BAM4 share features in cluding their plastidial localization and lack of measurable a-1,4-glucan hydrolyzing capacity. BAM4 is a regulator of starch degradation, and bam4 mutants display a starch-excess phenotype. Although bam9 single mutants resemble the wild-type (WT), genetic experiments reveal that the loss of BAM9 markedly enhances the starch-excess phenotypes of mutants al ready impaired in starch degradation. Thus, BAM9 also regulates starch breakdown, but in a different way. Interestingly, BAM9 gene expression is responsive to several environmental changes, while that of BAM4 is not. Furthermore, overexpres sion of BAM9 in the WT reduced leaf starch content, but overexpression in bam4 failed to complement fully that mutant’s starch-excess phenotype, suggesting that BAM9 and BAM4 are not redundant. We propose that BAM9 activates starch degradation, helping to manage carbohydrate availability in response to fluctuations in environmental conditions. As such, BAM9 represents an interesting gene target to explore in crop species.ISSN:0032-0889ISSN:1532-254

    Like Early Starvation 1 and Early Starvation 1 Promote and Stabilize Amylopectin Phase Transition in Starch Biosynthesis

    No full text
    Starch, the most abundant carbohydrate reserve in plants, primarily consists of the branched glucan amylopectin, which forms semi-crystalline granules. Phase transition from a soluble to an insoluble form depends on amylopectin architecture, requiring a compatible distribution of glucan chain lengths and a branch-point distribution. Here, we show that two starch-bound proteins, LIKE EARLY STARVATION 1 (LESV) and EARLY STARVATION 1 (ESV1), which have unusual carbohydrate-binding surfaces, promote the phase transition of amylopectin-like glucans, both in a heterologous yeast system expressing the starch biosynthetic machinery and in Arabidopsis plants. We propose a model wherein LESV serves as a nucleating role, with its carbohydrate-binding surfaces helping align glucan double helices to promote their phase transition into semi-crystalline lamellae, which are then stabilized by ESV1. Because both proteins are widely conserved, we suggest that protein-facilitated glucan crystallization may be a general and previously unrecognized feature of starch biosynthesis.ISSN:2375-254

    IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs

    No full text
    Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1β (IL-1β) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammatio
    corecore