6,325 research outputs found
A quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors
We describe a new polynomial time quantum algorithm that uses the quantum
fast fourier transform to find eigenvalues and eigenvectors of a Hamiltonian
operator, and that can be applied in cases (commonly found in ab initio physics
and chemistry problems) for which all known classical algorithms require
exponential time. Applications of the algorithm to specific problems are
considered, and we find that classically intractable and interesting problems
from atomic physics may be solved with between 50 and 100 quantum bits.Comment: 10 page
Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems
If quantum states exhibit small nonlinearities during time evolution, then
quantum computers can be used to solve NP-complete problems in polynomial time.
We provide algorithms that solve NP-complete and #P oracle problems by
exploiting nonlinear quantum logic gates. It is argued that virtually any
deterministic nonlinear quantum theory will include such gates, and the method
is explicitly demonstrated using the Weinberg model of nonlinear quantum
mechanics.Comment: 10 pages, no figures, submitted to Phys. Rev. Let
Simulation of Many-Body Fermi Systems on a Universal Quantum Computer
We provide fast algorithms for simulating many body Fermi systems on a
universal quantum computer. Both first and second quantized descriptions are
considered, and the relative computational complexities are determined in each
case. In order to accommodate fermions using a first quantized Hamiltonian, an
efficient quantum algorithm for anti-symmetrization is given. Finally, a
simulation of the Hubbard model is discussed in detail.Comment: Submitted 11/7/96 to Phys. Rev. Lett. 10 pages, 0 figure
Who is to blame? The relationship between ingroup identification and relative deprivation is moderated by ingroup attributions
Contradictory evidence can be found in the literature about whether ingroup identification and perceived relative deprivation are positively or negatively related. Indeed, theoretical arguments can be made for both effects. It was proposed that the contradictory findings can be explained by considering a hitherto unstudied moderator: The extent to which deprivation is attributed to the ingroup. It was hypothesised that identification would only have a negative impact on deprivation, and that deprivation would only have a negative impact on identification, if ingroup attributions are high. To test this, attributions to the ingroup were experimentally manipulated among British student participants (N = 189) who were asked about their perceived deprivation vis-à-vis German students, yield ing support for the hypotheses
Building Bridges with Boats: Preserving Community History through Intra- and Inter-Institutional Collaboration
This chapter discusses Launching through the Surf: The Dory Fleet of Pacific City, a project which documents the historical and contemporary role of dory fishers in the life of the coastal village of Pacific City, Oregon, U.S. Linfield College’s Department of Theatre and Communication Arts, its Jereld R. Nicholson Library, the Pacific City Arts Association, the Pacific City Dorymen\u27s Association, and the Linfield Center for the Northwest joined forces to engage in a collaborative college and community venture to preserve this important facet of Oregon’s history. Using ethnography as a theoretical grounding and oral history as a method, the project utilized artifacts from the dory fleet to augment interview data, and faculty/student teams created a searchable digital archive available via open access. The chapter draws on the authors’ experiences to identify a philosophy of strategic collaboration. Topics include project development and management, assessment, and the role of serendipity. In an era of value-added services where libraries need to continue to prove their worth, partnering with internal and external entities to create content is one way for academic libraries to remain relevant to agencies that do not have direct connections to higher education. This project not only developed a positive “town and gown” relationship with a regional community, it also benefited partner organizations as they sought to fulfill their missions. The project also serves as a potential model for intra- and inter-agency collaboration for all types of libraries
Efficient Algorithms for Universal Quantum Simulation
A universal quantum simulator would enable efficient simulation of quantum
dynamics by implementing quantum-simulation algorithms on a quantum computer.
Specifically the quantum simulator would efficiently generate qubit-string
states that closely approximate physical states obtained from a broad class of
dynamical evolutions. I provide an overview of theoretical research into
universal quantum simulators and the strategies for minimizing computational
space and time costs. Applications to simulating many-body quantum simulation
and solving linear equations are discussed
Elastic Scattering and Direct Detection of Kaluza-Klein Dark Matter
Recently a new dark matter candidate has been proposed as a consequence of
universal compact extra dimensions. It was found that to account for
cosmological observations, the masses of the first Kaluza-Klein modes (and thus
the approximate size of the extra dimension) should be in the range 600-1200
GeV when the lightest Kaluza-Klein particle (LKP) corresponds to the
hypercharge boson and in the range 1 - 1.8 TeV when it corresponds to a
neutrino. In this article, we compute the elastic scattering cross sections
between Kaluza-Klein dark matter and nuclei both when the lightest Kaluza-Klein
particle is a KK mode of a weak gauge boson, and when it is a neutrino. We
include nuclear form factor effects which are important to take into account
due to the large LKP masses favored by estimates of the relic density. We
present both differential and integrated rates for present and proposed
Germanium, NaI and Xenon detectors. Observable rates at current detectors are
typically less than one event per year, but the next generation of detectors
can probe a significant fraction of the relevant parameter space.Comment: 23 pages, 11 figures; v2,v3: Ref. added, discussion improved,
conclusions unchanged. v4: Introduction was expanded to be more appropriate
for non experts. Various clarifications added in the text. Version to be
published in New Journal of Physic
- …
