6,325 research outputs found

    A quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors

    Full text link
    We describe a new polynomial time quantum algorithm that uses the quantum fast fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Applications of the algorithm to specific problems are considered, and we find that classically intractable and interesting problems from atomic physics may be solved with between 50 and 100 quantum bits.Comment: 10 page

    Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems

    Get PDF
    If quantum states exhibit small nonlinearities during time evolution, then quantum computers can be used to solve NP-complete problems in polynomial time. We provide algorithms that solve NP-complete and #P oracle problems by exploiting nonlinear quantum logic gates. It is argued that virtually any deterministic nonlinear quantum theory will include such gates, and the method is explicitly demonstrated using the Weinberg model of nonlinear quantum mechanics.Comment: 10 pages, no figures, submitted to Phys. Rev. Let

    Simulation of Many-Body Fermi Systems on a Universal Quantum Computer

    Full text link
    We provide fast algorithms for simulating many body Fermi systems on a universal quantum computer. Both first and second quantized descriptions are considered, and the relative computational complexities are determined in each case. In order to accommodate fermions using a first quantized Hamiltonian, an efficient quantum algorithm for anti-symmetrization is given. Finally, a simulation of the Hubbard model is discussed in detail.Comment: Submitted 11/7/96 to Phys. Rev. Lett. 10 pages, 0 figure

    Who is to blame? The relationship between ingroup identification and relative deprivation is moderated by ingroup attributions

    Get PDF
    Contradictory evidence can be found in the literature about whether ingroup identification and perceived relative deprivation are positively or negatively related. Indeed, theoretical arguments can be made for both effects. It was proposed that the contradictory findings can be explained by considering a hitherto unstudied moderator: The extent to which deprivation is attributed to the ingroup. It was hypothesised that identification would only have a negative impact on deprivation, and that deprivation would only have a negative impact on identification, if ingroup attributions are high. To test this, attributions to the ingroup were experimentally manipulated among British student participants (N = 189) who were asked about their perceived deprivation vis-à-vis German students, yield ing support for the hypotheses

    Building Bridges with Boats: Preserving Community History through Intra- and Inter-Institutional Collaboration

    Get PDF
    This chapter discusses Launching through the Surf: The Dory Fleet of Pacific City, a project which documents the historical and contemporary role of dory fishers in the life of the coastal village of Pacific City, Oregon, U.S. Linfield College’s Department of Theatre and Communication Arts, its Jereld R. Nicholson Library, the Pacific City Arts Association, the Pacific City Dorymen\u27s Association, and the Linfield Center for the Northwest joined forces to engage in a collaborative college and community venture to preserve this important facet of Oregon’s history. Using ethnography as a theoretical grounding and oral history as a method, the project utilized artifacts from the dory fleet to augment interview data, and faculty/student teams created a searchable digital archive available via open access. The chapter draws on the authors’ experiences to identify a philosophy of strategic collaboration. Topics include project development and management, assessment, and the role of serendipity. In an era of value-added services where libraries need to continue to prove their worth, partnering with internal and external entities to create content is one way for academic libraries to remain relevant to agencies that do not have direct connections to higher education. This project not only developed a positive “town and gown” relationship with a regional community, it also benefited partner organizations as they sought to fulfill their missions. The project also serves as a potential model for intra- and inter-agency collaboration for all types of libraries

    Efficient Algorithms for Universal Quantum Simulation

    Full text link
    A universal quantum simulator would enable efficient simulation of quantum dynamics by implementing quantum-simulation algorithms on a quantum computer. Specifically the quantum simulator would efficiently generate qubit-string states that closely approximate physical states obtained from a broad class of dynamical evolutions. I provide an overview of theoretical research into universal quantum simulators and the strategies for minimizing computational space and time costs. Applications to simulating many-body quantum simulation and solving linear equations are discussed

    Elastic Scattering and Direct Detection of Kaluza-Klein Dark Matter

    Full text link
    Recently a new dark matter candidate has been proposed as a consequence of universal compact extra dimensions. It was found that to account for cosmological observations, the masses of the first Kaluza-Klein modes (and thus the approximate size of the extra dimension) should be in the range 600-1200 GeV when the lightest Kaluza-Klein particle (LKP) corresponds to the hypercharge boson and in the range 1 - 1.8 TeV when it corresponds to a neutrino. In this article, we compute the elastic scattering cross sections between Kaluza-Klein dark matter and nuclei both when the lightest Kaluza-Klein particle is a KK mode of a weak gauge boson, and when it is a neutrino. We include nuclear form factor effects which are important to take into account due to the large LKP masses favored by estimates of the relic density. We present both differential and integrated rates for present and proposed Germanium, NaI and Xenon detectors. Observable rates at current detectors are typically less than one event per year, but the next generation of detectors can probe a significant fraction of the relevant parameter space.Comment: 23 pages, 11 figures; v2,v3: Ref. added, discussion improved, conclusions unchanged. v4: Introduction was expanded to be more appropriate for non experts. Various clarifications added in the text. Version to be published in New Journal of Physic
    corecore