1,838 research outputs found

    Calculation of resonances in the Coulomb three-body system with two disintegration channels in the adiabatic hyperspherical approach

    Full text link
    The method of calculation of the resonance characteristics is developed for the metastable states of the Coulomb three-body (CTB) system with two disintegration channels. The energy dependence of K-matrix in the resonance region is calculated with the use of the stabilization method. Resonance position and partial widths are obtained by fitting the numerically calculated K(E)-matrix with the help of the generalized Breit-Wigner formula.Comment: Latex, 11 pages with 5 figures and 2 table

    Multilevel Analysis of Oscillation Motions in Active Regions of the Sun

    Full text link
    We present a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere-corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to optical ones. This implies a MHD wave traveling upward inside the umbral magnetic tube of the sunspot. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records.Comment: 17 pages, 9 figures, accepted to Solar Physics (18 Jan 2011). The final publication is available at http://www.springerlink.co

    Artificial Intelligence Will Never Completely Replace Humans

    Get PDF
    A review of the author’s original studies related to the human brain as an object of electronics is given. The following issues are considered: the proposed full electronic interpretation in the functioning of the brain and a complex hierarchical approach to studying the brain; human consciousness; prospects and problems of creating a supermind; and prospects for the use of nanoelectronics, nanomaterials, and nanotechnologies in studying the human brain

    Plasma Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices

    Get PDF
    Introduction. PECVD enables fabrication of wide range of advanced materials with various structure such as amorphous, polymorphous, nano-crystalline, nanostructured, microcrystalline etc. and with various electronic properties. The latter can be also changed by different dopingl. PECVD silicon materials are commercially employed in multi-layered PV structures (including ones on flexible substrates). Combining these materials with crystalline silicon active substrate resulted in significant improvement of PCE in hetero junction technology PV structures. Existence of new organic semiconductors (OS) together with understanding of physical properties resulted in fast development of OC PV devicesAim. To consider both PECVD and OS materials and to present description of fabrication, structure and electronic properties for device application.Materials and methods. Devices based on non-crystalline materials, devices based on OS, hybrid devices. PECVD and Spin coating technique was used to deposit materials with tunable properties enabling device engineering possibilities.Results. PECVD and OS materials were analyzed. These materials have different levels of characterization (data volume, interpretation of the results etc.) and of understanding of physics determining device performance. Some examples of these materials in PV including structures with crystalline silicon were considered.Conclusion. Important advantage of both PECVD and OS materials is that fabrication methods are compatible and allow fabrication of great variety of hybrid device structures on crystalline semiconductors. Advantages of such devices are difficult to predict because of lack of data in scientific literature. However a new area in material science and related devices for further exploring and exploiting has appeared.Introduction. PECVD enables fabrication of wide range of advanced materials with various structure such as amorphous, polymorphous, nano-crystalline, nanostructured, microcrystalline etc. and with various electronic properties. The latter can be also changed by different dopingl. PECVD silicon materials are commercially employed in multi-layered PV structures (including ones on flexible substrates). Combining these materials with crystalline silicon active substrate resulted in significant improvement of PCE in hetero junction technology PV structures. Existence of new organic semiconductors (OS) together with understanding of physical properties resulted in fast development of OC PV devices.Aim. To consider both PECVD and OS materials and to present description of fabrication, structure and electronic properties for device application.Materials and methods. Devices based on non-crystalline materials, devices based on OS, hybrid devices. PECVD and Spin coating technique was used to deposit materials with tunable properties enabling device engineering possibilities.Results. PECVD and OS materials were analyzed. These materials have different levels of characterization (data volume, interpretation of the results etc.) and of understanding of physics determining device performance. Some examples of these materials in PV including structures with crystalline silicon were considered.Conclusion. Important advantage of both PECVD and OS materials is that fabrication methods are compatible and allow fabrication of great variety of hybrid device structures on crystalline semiconductors. Advantages of such devices are difficult to predict because of lack of data in scientific literature. However a new area in material science and related devices for further exploring and exploiting has appeared

    Synchronization by external periodic force in ensembles of globally coupled phase oscillators

    Full text link
    We consider the effect of an external periodic force on chimera state in the phase oscillator model proposed by Abrams et al. [Phys. Rev. Lett, v. 101, 00319007 (2008)]. Using the Ott--Antonsen reduction the dynamical equations for the global order parameter characterizing the degree of synchronization are constructed. The regions of the global order parameter frequency locking by an external periodic force are constructed. The possibility of stable chimeras synchronization and unstable chimeras stabilization are established

    The Lyapunov exponent in the Sinai billiard in the small scatterer limit

    Full text link
    We show that Lyapunov exponent for the Sinai billiard is λ=2log(R)+C+O(Rlog2R)\lambda = -2\log(R)+C+O(R\log^2 R) with C=14log2+27/(2π2)ζ(3)C=1-4\log 2+27/(2\pi^2)\cdot \zeta(3) where RR is the radius of the circular scatterer. We consider the disk-to-disk-map of the standard configuration where the disks is centered inside a unit square.Comment: 15 pages LaTeX, 3 (useful) figures available from the autho

    Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach

    Get PDF
    In this paper we consider the problem of deriving approximate autonomous dynamics for a number of variables of a dynamical system, which are weakly coupled to the remaining variables. In a previous paper we have used the Ruelle response theory on such a weakly coupled system to construct a surrogate dynamics, such that the expectation value of any observable agrees, up to second order in the coupling strength, to its expectation evaluated on the full dynamics. We show here that such surrogate dynamics agree up to second order to an expansion of the Mori-Zwanzig projected dynamics. This implies that the parametrizations of unresolved processes suited for prediction and for the representation of long term statistical properties are closely related, if one takes into account, in addition to the widely adopted stochastic forcing, the often neglected memory effects.Comment: 14 pages, 1 figur
    corecore