17 research outputs found

    Interferon-gamma alters the phagocytic activity of the mouse trophoblast

    Get PDF
    Interferon-gamma (IFN-gamma) mediates diverse functions in bone marrow-derived phagocytes, including phagocytosis and microbe destruction. This cytokine has also been detected at implantation sites under both physiological and pathological conditions in many different species. At these particular sites, the outermost embryonic cell layer in close contact with the maternal tissues, the trophoblast exhibits intense phagocytic activity. To determine whether IFN-gamma affects phagocytosis of mouse-trophoblast cells, ectoplacental cone-derived trophoblast was cultured and evaluated for erythrophagocytosis. Phagocytic activity was monitored ultrastructurally and expressed as percentage of phagocytic trophoblast in total trophoblast cells. Conditioned medium from concanavalin-A-stimulated spleen cells significantly enhanced trophoblast phagocytosis. This effect was blocked by pre-incubation with an anti-IFN-gamma neutralizing antibody. Introduction of mouse recombinant IFN-gamma (mrIFN-gamma) to cultures did not increase cell death, but augmented the percentage of phagocytic cells in a dose-dependent manner. Ectoplacental cones from mice deficient for IFN-gamma receptor alpha-chain showed a significant decrease of the phagocytosis, even under mrIFN-gamma stimulation, suggesting that IFN-gamma-induced phagocytosis are receptor-mediated. Reverse transcriptase-PCR analyses confirmed the presence of mRNA for IFN-gamma receptor alpha and beta-chains in trophoblast cells and detected a significant increase in the mRNA levels of IFN-gamma receptor beta-chain, mainly, when cultured cells were exposed to IFN-gamma. Immunohistochemistry and Western blot analyses also revealed protein expression of the IFN-gamma receptor alpha-chain. These results suggest that IFN-gamma may participate in the phagocytic activation of the mouse trophoblast, albeit the exact mechanism was not hereby elucidated. Protective and/or nutritional fetal benefit may result from this physiological response. In addition, our data also shed some light on the understanding of trophoblast tolerance to inflammatory/immune cytokines during normal gestation

    Anti-IL-2 Treatment Impairs the Expansion of Treg Cell Population during Acute Malaria and Enhances the Th1 Cell Response at the Chronic Disease

    Get PDF
    Plasmodium chabaudi infection induces a rapid and intense splenic CD4+ T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (Treg) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of Treg cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4+ T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4+CD25+Foxp3+ cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4+ T cells, JES6-1 treatment does not impair effector CD4+ T cell activation and IFN-γ production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-α and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4+ T cells from non-treated chronic mice, while it further increased the response of CD4+ T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of Treg cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease

    Hipersensibilidade de contacto a DNFB em camundongos infectados pelo Trypanosoma cruzi

    No full text

    Lack of signaling by IL-4 or by IL-4/IL-13 has more attenuating effects on Leishmania amazonensis dorsal skin - than on footpad-infected mice

    Get PDF
    Lesion development in tegumentary leishmaniasis is markedly influenced by the inoculation site and the type and number of injected infective forms. This and the yet unclear contribution of Th2 cytokines as susceptibility factors to Leishmania amazonensis infection prompted us to investigate the roles of IL-4, IL-13 and IL-10 on C57BL/6 and BALB/c mice infected in the footpad (paw) or rump with low-dose L. amazonensis purified-metacyclics. Wild-type (WT) mice of either strain developed, in the rump, a single large ulcerated lesion whereas paw lesions never ulcerated and were much smaller in C57BL/6 than in BALB/c mice. However, rump-inoculated IL-4-deficient (IL-4(-/-))C57BL/6 mice did not develop any visible lesions although parasites remained in the dermis and lymph nodes, even after systemic IL-10-receptor blocking. By comparison, all IL-4(-/-) BALB/c mice developed rump ulcers. Strikingly, only 30% of rump-infected IL-4R alpha(-/-) BALB/c mice developed lesions. IL-4(-/-) mice had higher IFN-gamma and lower IL-10 and IL-13 levels than WT mice. Paw-infected IL-4R alpha(-/-) BALB/c mice developed minimal paw lesions. While other factors contributing to L amazonensis susceptibility cannot be discounted, our results indicate that absent signalling by IL-4 or by IL-4/IL-13 have more intense attenuating effects on rump than on paw lesions but do not eradicate parasitism. (C) 2011 Elsevier Inc. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo A Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Interferon-gamma alters the phagocytic activity of the mouse trophoblast

    No full text
    Abstract Interferon-gamma (IFN-gamma) mediates diverse functions in bone marrow-derived phagocytes, including phagocytosis and microbe destruction. This cytokine has also been detected at implantation sites under both physiological and pathological conditions in many different species. At these particular sites, the outermost embryonic cell layer in close contact with the maternal tissues, the trophoblast exhibits intense phagocytic activity. To determine whether IFN-gamma affects phagocytosis of mouse-trophoblast cells, ectoplacental cone-derived trophoblast was cultured and evaluated for erythrophagocytosis. Phagocytic activity was monitored ultrastructurally and expressed as percentage of phagocytic trophoblast in total trophoblast cells. Conditioned medium from concanavalin-A-stimulated spleen cells significantly enhanced trophoblast phagocytosis. This effect was blocked by pre-incubation with an anti-IFN-gamma neutralizing antibody. Introduction of mouse recombinant IFN-gamma (mrIFN-gamma) to cultures did not increase cell death, but augmented the percentage of phagocytic cells in a dose-dependent manner. Ectoplacental cones from mice deficient for IFN-gamma receptor alpha-chain showed a significant decrease of the phagocytosis, even under mrIFN-gamma stimulation, suggesting that IFN-gamma-induced phagocytosis are receptor-mediated. Reverse transcriptase-PCR analyses confirmed the presence of mRNA for IFN-gamma receptor alpha and beta-chains in trophoblast cells and detected a significant increase in the mRNA levels of IFN-gamma receptor beta-chain, mainly, when cultured cells were exposed to IFN-gamma. Immunohistochemistry and Western blot analyses also revealed protein expression of the IFN-gamma receptor alpha-chain. These results suggest that IFN-gamma may participate in the phagocytic activation of the mouse trophoblast, albeit the exact mechanism was not hereby elucidated. Protective and/or nutritional fetal benefit may result from this physiological response. In addition, our data also shed some light on the understanding of trophoblast tolerance to inflammatory/immune cytokines during normal gestation.</p

    Interleukin-12 stimulation of lymphoproliferative responses in Trypanosoma cruzi infection

    No full text
    The cytokine interleukin-12 (IL-12) is essential for resistance to Trypanosoma cruzi infection because it stimulates the synthesis of interferon-γ (IFN-γ), a major activator of the parasiticidal effect of macrophages. A less studied property of IL-12 is its ability to amplify the proliferation of T or natural killer (NK) lymphocytes. We investigated the role of endogenously produced IL-12 in the maintenance of parasite antigen (T-Ag)-specific lymphoproliferative responses during the acute phase of T. cruzi infection. We also studied whether treatment with recombinant IL-12 (rIL-12) would stimulate T-Ag-specific or concanavalin A (Con A)-stimulated lymphoproliferation and abrogate the suppression that is characteristic of the acute phase of infection. Production of IL-12 by spleen-cell cultures during T. cruzi infection increased in the first days of infection (days 3–5) and decreased as infection progressed beyond day 7. The growth-promoting activity of endogenous IL-12 on T-Ag-specific proliferation was observed on day 5 of infection. Treatment of cultures with rIL-12 promoted a significant increase in Con A-stimulated proliferation by spleen cells from normal or infected mice. Enhanced T-Ag-specific proliferation by rIL-12 was seen in spleen cell cultures from infected mice providing that nitric oxide production was inhibited by treatment with the competitive inhibitor N(G)-monomethyl-l-arginine (NMMA). Enhancement of proliferation promoted by IL-12 occurred in the presence of neutralizing anti-interleukin-2 (IL-2) antibody, suggesting that this activity of IL-12 was partly independent of endogenous IL-2. Thymidine incorporation levels achieved with rIL-12 treatment of the cultures were ≈ 50% of those stimulated by rIL-2 in the same cultures
    corecore