22,962 research outputs found
Time and Geometric Quantization
In this paper we briefly review the functional version of the Koopman-von
Neumann operatorial approach to classical mechanics. We then show that its
quantization can be achieved by freezing to zero two Grassmannian partners of
time. This method of quantization presents many similarities with the one known
as Geometric Quantization.Comment: Talk given by EG at "Spacetime and Fundamental Interactions: Quantum
Aspects. A conference to honour A.P.Balachandran's 65th birthday
The Visibility of Galactic Bars and Spiral Structure At High Redshifts
We investigate the visibility of galactic bars and spiral structure in the
distant Universe by artificially redshifting 101 B-band CCD images of local
spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. Our
artificially redshifted images correspond to Hubble Space Telescope I-band
observations of the local galaxy sample seen at z=0.7, with integration times
matching those of both the very deep Northern Hubble Deep Field data, and the
much shallower Flanking Field observations. The expected visibility of galactic
bars is probed in two ways: (1) using traditional visual classification, and
(2) by charting the changing shape of the galaxy distribution in "Hubble
space", a quantitative two-parameter description of galactic structure that
maps closely on to Hubble's original tuning fork. Both analyses suggest that
over 2/3 of strongly barred luminous local spirals i.e. objects classified as
SB in the Third Reference Catalog) would still be classified as strongly barred
at z=0.7 in the Hubble Deep Field data. Under the same conditions, most weakly
barred spirals (classified SAB in the Third Reference Catalog) would be
classified as regular spirals. The corresponding visibility of spiral structure
is assessed visually, by comparing luminosity classifications for the
artificially redshifted sample with the corresponding luminosity
classifications from the Revised Shapley Ames Catalog. We find that for
exposures times similar to that of the Hubble Deep Field spiral structure
should be detectable in most luminous low-inclination spiral galaxies at z=0.7
in which it is present. [ABRIDGED]Comment: Accepted for publication in The Astronomical Journa
Variability of GRB Afterglows Due to Interstellar Turbulence
Gamma-Ray Burst (GRB) afterglows are commonly interpreted as synchrotron
emission from a relativistic blast wave produced by a point explosion in an
ambient medium, plausibly the interstellar medium of galaxies. We calculate the
amplitude of flux fluctuations in the lightcurve of afterglows due to
inhomogeneities in the surrounding medium. Such inhomogeneities are an
inevitable consequence of interstellar turbulence, but could also be generated
by variability and anisotropy in a precursor wind from the GRB progenitor.
Detection of their properties could provide important clues about the
environments of GRB sources. We apply our calculations to GRB990510, where an
rms scatter of 2% was observed for the optical flux fluctuations on the 0.1--2
hour timescale during the first day of the afterglow, consistent with it being
entirely due to photometric noise (Stanek et al. 1999). The resulting upper
limits on the density fluctuations on scales of 20-200 AU around the source of
GRB990510, are lower than the inferred fluctuation amplitude on similar scales
in the Galactic interstellar medium. Hourly monitoring of future optical
afterglows might therefore reveal fractional flux fluctuations at the level of
a few percent.Comment: 18 pages, submitted to Ap
Identifying the Environment and Redshift of GRB Afterglows from the Time-Dependence of Their Absorption Spectra
The discovery of Gamma-Ray Burst (GRB) afterglows revealed a new class of
variable sources at optical and radio wavelengths. At present, the environment
and precise redshift of the detected afterglows are still unknown. We show that
if a GRB source resides in a compact (<100pc) gas-rich environment, the
afterglow spectrum will show time-dependent absorption features due to the
gradual ionization of the surrounding medium by the afterglow radiation.
Detection of this time-dependence can be used to constrain the size and density
of the surrounding gaseous system. For example, the MgII absorption line
detected in GRB970508 should have weakened considerably during the first month
if the absorption occurred in a gas cloud of size <100pc around the source. The
time-dependent HI or metal absorption features provide a precise determination
of the GRB redshift.Comment: 13 pages, 4 figures, submitted to ApJ
The Pierre Auger Observatory: Results on Ultra-High Energy Cosmic Rays
The focus of this article is on recent results on ultra-high energy cosmic
rays obtained with the Pierre Auger Observatory. The world's largest instrument
of this type and its performance are described. The observations presented here
include the energy spectrum, the primary particle composition, limits on the
fluxes of photons and neutrinos and a discussion of the anisotropic
distribution of the arrival directions of the most energetic particles.
Finally, plans for the construction of a Northern Auger Observatory in
Colorado, USA, are discussed.Comment: Proceedings of the International Workshop on Advances in Cosmic Ray
Science, Waseda University, Shinjuku, Tokyo, Japan, March 2008; to be
published in the Journal of the Physical Society of Japan (JPSJ) supplemen
Optical properties of current carrying molecular wires
We consider several fundamental optical phenomena involving single molecules
in biased metal-molecule-metal junctions. The molecule is represented by its
highest occupied and lowest unoccupied molecular orbitals, and the analysis
involves the simultaneous consideration of three coupled fluxes: the electronic
current through the molecule, energy flow between the molecule and
electron-hole excitations in the leads and the incident and/or emitted photon
flux. Using a unified theoretical approach based on the non-equilibrium Green
function method we derive expressions for the absorption lineshape (not an
observable but a ueful reference for considering yields of other optical
processes) and for the current induced molecular emission in such junctions. We
also consider conditions under which resonance radiation can induce electronic
current in an unbiased junction. We find that current driven molecular emission
and resonant light induced electronic currents in single molecule junctions can
be of observable magnitude under appropriate realizable conditions. In
particular, light induced current should be observed in junctions involving
molecular bridges that are characterized by strong charge transfer optical
transitions. For observing current induced molecular emission we find that in
addition to the familiar need to control the damping of molecular excitations
into the metal substrate the phenomenon is also sensitive to the way in which
the potential bias si distributed on the junction.Comment: 56 pages, 8 figures; submitted to JC
The Star Formation History of the Hubble Sequence: Spatially Resolved Colour Distributions of Intermediate Redshift Galaxies in the Hubble Deep Field
We analyse the spatially resolved colours of distant galaxies of known
redshift in the Hubble Deep Field, using a new technique based on matching
resolved four-band internal colour data to the predictions of evolutionary
synthesis models. We quantify the relative age, dispersion in age, ongoing
star-formation rate, star-formation history, and dust content of these
galaxies. To demonstrate the potential of the method, we study the
near-complete sample of 32 I ~ 0.5 studied by
Bouwens et al (1997). The dispersion of the internal colours of a sample of
0.4<z<1 early-type field galaxies in the HDF indicates that ~40% [4/11] show
evidence of star formation which must have occurred within the past third of
their ages at the epoch of observation. For a sample of well-defined spirals,
we similarly exploit the dispersion in colour to analyse the relative histories
of bulge and disc stars, in order to resolve the current controversy regarding
the ages of galactic bulges. Dust and metallicity gradients are ruled out as
major contributors to the colour dispersions we observe in these systems. The
median ages of bulge stars are found to be signicantly older than those in
galactic discs, and exhibit markedly different star-formation histories. This
result is inconsistent with a secular growth of bulges from disc instabilities,
but consistent with gradual disc formation by accretion of gas onto bulges, as
predicted by hierarchical theories. We extend our technique in order to discuss
the star formation history of the entire Bouwens et al sample in the context of
earlier studies concerned with global star formation histories.Comment: 8 colour postscript figures plus LaTeX source; submitted to MNRAS.
Uses the mnras.sty LaTeX style fil
Observation and inverse problems in coupled cell networks
A coupled cell network is a model for many situations such as food webs in
ecosystems, cellular metabolism, economical networks... It consists in a
directed graph , each node (or cell) representing an agent of the network
and each directed arrow representing which agent acts on which one. It yields a
system of differential equations , where the component
of depends only on the cells for which the arrow
exists in . In this paper, we investigate the observation problems in
coupled cell networks: can one deduce the behaviour of the whole network
(oscillations, stabilisation etc.) by observing only one of the cells? We show
that the natural observation properties holds for almost all the interactions
Nonthermal THz to TeV Emission from Stellar Wind Shocks in the Galactic Center
The central parsec of the Galaxy contains dozens of massive stars with a
cumulative mass loss rate of ~ 10^{-3} solar masses per year. Shocks among
these stellar winds produce the hot plasma that pervades the central part of
the galaxy. We argue that these stellar wind shocks also efficiently accelerate
electrons and protons to relativistic energies. The relativistic electrons
inverse Compton scatter the ambient ultraviolet and far infrared radiation
field, producing high energy gamma-rays with a roughly constant luminosity from
\~ GeV to ~ 10 TeV. This can account for the TeV source seen by HESS in the
Galactic Center. Our model predicts a GLAST counterpart to the HESS source with
a luminosity of ~ 10^{35} ergs/s and cooling break at ~ 4 GeV. Synchrotron
radiation from the same relativistic electrons should produce detectable
emission at lower energies, with a surface brightness ~ 10^{32} B^2_{-3}
ergs/s/arcsec^2 from ~ THz to ~ keV, where B_{-3} is the magnetic field
strength in units of mG. The observed level of diffuse thermal X-ray emission
in the central parsec requires B < 300 micro-G in our models. Future detection
of the diffuse synchrotron background in the central parsec can directly
constrain the magnetic field strength, providing an important boundary
condition for models of accretion onto Sgr A*.Comment: submitted to ApJ Letter
- …