9 research outputs found
Enhanced Integrin α4β1-Mediated Adhesion Contributes to a Mobilization Defect of Endothelial Progenitor Cells in Diabetes.
Diabetes is associated with a deficit of circulating endothelial progenitor cells (EPCs), which has been attributed to their defective mobilization from the bone marrow. The basis for this mobilization defect is not completely understood, and we sought to determine if hyperglycemic conditions enhanced EPC adhesion. We found that culturing EPCs in high glucose media increased adhesion to bone marrow stromal cells. This enhanced adhesion was associated with decreased expression of protein kinase A regulatory subunit 1β (PRKAR1β), activation of protein kinase A (PKA), and phosphorylation of α4-integrin on serine 988. This potentiated adhesion was reversed by treatment with a PKA inhibitor, overexpression of PRKAR1β, or expression of a phosphorylation-defective α4-integrin variant (α4[S988A]). Using a model of type 1 diabetes, we showed that α4(S988A)-expressing mice have more circulating EPCs than their wild-type counterparts. Moreover, diabetic α4(S988A) mice demonstrate enhanced revascularization after hind limb ischemia. Thus, we have identified a novel signaling mechanism activating PKA in diabetes (downregulation of an inhibitory regulatory subunit) that leads to deficits of circulating EPCs and impaired vascular repair, which could be reversed by α4-integrin mutation
Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction.
Endothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network
Recommended from our members
Enhanced Integrin α4β1-Mediated Adhesion Contributes to a Mobilization Defect of Endothelial Progenitor Cells in Diabetes.
Diabetes is associated with a deficit of circulating endothelial progenitor cells (EPCs), which has been attributed to their defective mobilization from the bone marrow. The basis for this mobilization defect is not completely understood, and we sought to determine if hyperglycemic conditions enhanced EPC adhesion. We found that culturing EPCs in high glucose media increased adhesion to bone marrow stromal cells. This enhanced adhesion was associated with decreased expression of protein kinase A regulatory subunit 1β (PRKAR1β), activation of protein kinase A (PKA), and phosphorylation of α4-integrin on serine 988. This potentiated adhesion was reversed by treatment with a PKA inhibitor, overexpression of PRKAR1β, or expression of a phosphorylation-defective α4-integrin variant (α4[S988A]). Using a model of type 1 diabetes, we showed that α4(S988A)-expressing mice have more circulating EPCs than their wild-type counterparts. Moreover, diabetic α4(S988A) mice demonstrate enhanced revascularization after hind limb ischemia. Thus, we have identified a novel signaling mechanism activating PKA in diabetes (downregulation of an inhibitory regulatory subunit) that leads to deficits of circulating EPCs and impaired vascular repair, which could be reversed by α4-integrin mutation
Enhanced Integrin α4β1–Mediated Adhesion Contributes to a Mobilization Defect of Endothelial Progenitor Cells in Diabetes
Diabetes is associated with a deficit of circulating endothelial progenitor cells (EPCs), which has been attributed to their defective mobilization from the bone marrow. The basis for this mobilization defect is not completely understood, and we sought to determine if hyperglycemic conditions enhanced EPC adhesion. We found that culturing EPCs in high glucose media increased adhesion to bone marrow stromal cells. This enhanced adhesion was associated with decreased expression of protein kinase A regulatory subunit 1β (PRKAR1β), activation of protein kinase A (PKA), and phosphorylation of α4-integrin on serine 988. This potentiated adhesion was reversed by treatment with a PKA inhibitor, overexpression of PRKAR1β, or expression of a phosphorylation-defective α4-integrin variant (α4[S988A]). Using a model of type 1 diabetes, we showed that α4(S988A)-expressing mice have more circulating EPCs than their wild-type counterparts. Moreover, diabetic α4(S988A) mice demonstrate enhanced revascularization after hind limb ischemia. Thus, we have identified a novel signaling mechanism activating PKA in diabetes (downregulation of an inhibitory regulatory subunit) that leads to deficits of circulating EPCs and impaired vascular repair, which could be reversed by α4-integrin mutation
Depletion of Circulating CD34+/KDR+ Cells in Type 2 Diabetes is Associated With Glycemic Control
Background and Hypothesis: Circulating levels of endothelial progenitor cells have been found to be predictive of cardiovascular events and mortality. Although the levels of these cells reflect overall cardiovascular disease (CVD) risk, studies assessing their association with major CVD factors - hypertension, dyslipidemia and diabetes have yielded inconsistent results and the mechanisms contributing to EPC depletion remain unknown. We hypothesized that EPC depletion occurring in diabetes is mediated in part by hyperglycemia or insulin resistance.
Methods: Circulating levels of progenitor cells were measured by flow cytometry in 108 diabetic or non-diabetic subjects recruited from the University of Louisville Health System. Reactive hyperemia index (RHI) was measured by the EndoPAT. Demographic information was acquired and blood, plasma and urine were used for biochemical analyses. Subjects were divided into high and low EPC count groups using the median split. Data was analyzed using a Chi-square test, a two-sample rank sum test, and univariable and multivariable logistic regressions.
Results: Levels of CD34+/KDR+/CD14−/CD16− cells (EPCs) were associated with the diagnosis of diabetes (p=0.04), but not with other demographic covariates, hypertension or dyslipidemia. Levels of CD34+, AC133+ and CD34+/AC133+/CD45+ cells also displayed significant association with diabetes (p=0.038, 0.014 and 0.038 respectively). RHI was strongly associated with diabetes (p\u3c0.0001) hypertension and dyslipidemia, however, no significant associations were observed between RHI and EPCs. EPC levels were inversely associated with HbA1C (p=0.047) and fasting blood glucose, but not with insulin levels or the HOMA-IR score. In the complete model, the association between EPCs and diabetes was strengthened by the inclusion of RHI, indicating more robust EPC depletion in those with endothelial dysfunction.
Conclusion: Circulating EPC levels are a robust index of long-term glycemic control and are associated with hyperglycemia rather than contemporaneous insulin levels or endothelial dysfunction. These findings may help in prognosis and early identification of CVD risk in patients with diabetes, independent of other risk estimates
Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction
Endothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network