369 research outputs found

    Strength and ductility of bulk nanostructured aluminum processed by mechanical milling

    Get PDF
    Aluminum\u27s many exceptional properties promote it to be as a strong candidate for several applications in the aerospace, automotive, building and packaging industries to name a few. As a result, strengthening Aluminum has been the interest of many researchers over the time. The most commonly followed approaches are alloying and thermal treatments. However, recently, refining the internal structure of materials until reaching the nano-scale range to improve their mechanical properties has been fostered. Specifically speaking, research adopting this approach on various metals has yielded promising results. One of the techniques used to produce nanostructured Aluminum powders, which is the one employed in this research, is mechanical milling. Aluminum powders were mechanically milled using a high-energy ball mill under argon atmosphere for several milling durations up to 12 hours. The effect of the process control agent used during milling was investigated to determine the suitable amount to be used for best achievable mechanical behavior. Both X-ray diffraction patterns and scanning electron micrographs have revealed the establishment of nanostructured Aluminum by mechanical milling. Bulk samples were synthesized by powder metallurgy. The success of the process of powder consolidation was determined by examining the degree of densification through density measurements. The effect of mechanical milling on the bulk samples has been studied by evaluating the tensile and compressive behaviors of the developed material. The material after milling for 12 hours exhibited a tensile strength that is four folds that of the starting powders. But this elevated strength was at the cost of sacrificing the ductility of the material. Nevertheless, under compressive loading the material behaved in a ductile manner in addition to the improved strength. Peaks for secondary phases have been noticed in the X-ray diffraction patterns for the bulk samples after mechanical milling. The types of these phases remain undetermined, although high suspects of oxides and carbides exist, that might have contributed to the material strengthening. Transmission electron micrographs have ascertained achieving a nanocrystalline structure after milling for 12 hours. The poor ductility of the milled Aluminum acts as a barrier that hinders the utility of the material since almost all the applications require an amount of ductility within certain margins for shaping, manufacturing, and so forth. Hence, post-extrusion annealing was conducted on additional samples in an attempt to improve the ductility. This has been proved quite successful, but still the achieved ductility is nowhere near the range that can help commercialize the newly developed material. It was also remarkable that annealing didn\u27t result in sacrificing the acquired strength; on the contrary, the tensile strength of the material was noticed to have increased. Another approach to compromise the strength and ductility of mechanically milled Aluminum was to mix soft as-received Aluminum powders with the Aluminum powders mechanically milled for 12 hours to produce bi-modally structured Aluminum composite. Two mixing techniques were tried out that are turbula mixer and the high-energy ball mill. Using turbula mixer yielded disappointing results by demonstrating a weak bond between the two constituents. Conversely, using the ball mill for mixing allowed a strong bond to form between the constituents leading to enhancing the ductility of mechanically milled Aluminum for 12 hours without depressing the strength beyond the acceptable range

    The application of composite through-thickness assessment to additively manufactured structures

    Get PDF
    This study looks into the applicability of through-thickness assessment to additive manufacturing (AM) carbon-fibre reinforced polymers (CFRPs). The study utilised a material extrusion printer that uses fused filament fabrication and composite filament fabrication technologies to manufacture functionally-graded polymer and composite polymer parts. The matrix material of choice was nylon 6. Samples were printed exploring a range of reinforcement volume content. In summary, this study presents an assessment of the applicability of through-thickness testing to AM CFRP specimens and provides a performance comparison between AM composite through-thickness properties and the properties of equivalent CM CFRP specimens

    Compressive failure modes and energy absorption in additively manufactured double gyroid lattices

    Get PDF
    Lattice structures are excellent candidates for lightweight, energy absorbing applications such as personal protective equipment. In this paper we explore several important aspects of lattice design and production by metal additive manufacturing, including the choice of cell size and the application of a post-manufacture heat treatment. Key results include the characterisation of several failure modes in double gyroid lattices made of Al-Si10-Mg, the elimination of brittle fracture and low strain failure by the application of a heat treatment, and the calculation of specific energy absorption under compressive deformation (16x106 J m-3 up to 50% strain). These results demonstrate the suitability of double gyroid lattices for energy absorbing applications, and will enable the design and manufacture of more efficient lightweight parts in the future

    On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties

    Get PDF
    Selective laser melting (SLM) is a relatively new manufacturing technique that can be used to process a range of materials. Aluminum alloys are potential candidates for SLM but are more difficult to process than the titanium alloys more commonly used with this technique. This is because of the former’s physical properties that can result in high levels of porosity in the final parts. Although the majority of studies to date into the processing of Al alloys by SLM have considered the development of load bearing objects, in particular porosity reduction and mechanical characterization of the parts, it is also important to study the single tracks formed during the process. This paper studies the effect of changing the scan speed on the formation of fusion lines and single tracks from an Al alloy, as well as their overlap to form a single layer. The geometrical features of the melt pools as well as the boundaries of continuity and/or irregularities were defined and showed dependence on scan speed. Keyhole mode melting domination was observed. The scan tracks and layers were porosity-free suggesting pores to form with layer accumulation. Investigations showed that increasing the layer thickness should be avoided as it promoted defects. Energy dispersive X-ray (EDX) mapping was implemented to compare the chemical composition distribution in the SLM material and its as-cast counterpart. A fine microstructure with homogenous distribution of the alloying elements was observed. Nanoindentation and EDX were used to establish an understanding of the hardness profile across melt pools of single tracks and their interrelation to the chemical composition. The elemental distribution yielded uniform high nano-hardness with no spatial variation across the SLM material

    Reducing porosity in AlSi10Mg parts processed by selective laser melting

    Get PDF
    Selective laser melting (SLM) is widely gaining popularity as an alternative manufacturing technique for complex and customized parts. SLM is a near net shape process with minimal post processing machining required dependent upon final application. The fact that SLM produces little waste and enables more optimal designs also raises opportunities for environmental advantages. The use of aluminium (Al) alloys in SLM is still quite limited due to difficulties in processing that result in parts with high degrees of porosity. However, Al alloys are favoured in many high-end applications for their exceptional strength and stiffness to weight ratio meaning that they are extensively used in the automotive and aerospace industries. This study investigates the windows of parameters required to produce high density parts from AlSi10Mg alloy using selective laser melting. A compromise between the different parameters and scan strategies was achieved and used to produce parts achieving a density of 99.8%

    Additive manufacture of an aluminium alloy: processing, microstructure, and mechanical properties

    Get PDF
    Additive manufacturing of aluminium alloys using selective laser melting (SLM) is of research interest nowadays because of its potential benefits in industry sectors such as aerospace and automotive. However, in order to demonstrate the credibility of aluminium SLM for industrial needs, a comprehensive understanding of the interrelation between the process parameters, produced microstructure, and mechanical behaviour is still needed. This thesis aims at contributing to developing this comprehensive understanding through studying the various aspects of the process, with investigation of the powder raw material to the near fully dense samples, focussing on the alloy AlSi10Mg. The primary building blocks in the SLM process are the single tracks. Their formation is affected by the physical properties of the material that control the laser-material interactions. Keyhole mode melting was found to be dominant when processing AlSi10Mg, producing conical-shaped melt pools. Porosity was not evident in single tracks and individual layers. Satellites and balling defects, however, were observed on top of the tracks and layers at higher scan speeds, which contribute to porosity formation with layer progression. The combination of process parameters controls the amount of porosity formed, with the scan speed controlling the type of pore; metallurgical or keyhole pore. A pre-melt scan strategy significantly reduced porosity and successfully produced 99.8% dense samples. Furthermore, the pre-melt scan strategy was seen to effectively reduce the number of pores developed when using powder that does not fully comply with the process standards. The gas flow rate within the process chamber controlled laser spatter and condensate removal during processing, which in its turn affected the degree of porosity in the samples. The SLM process resulted in an AlSi10Mg alloy with a characteristically fine microstructure, with fine equiaxed grains at the melt pool core and coarser elongated grains at the boundary. The material showed a strong texture, owing to directional solidification. Cellular dendritic Al with inter-dendritic Si was observed. The material was subjected to a T6 heat treatment that transformed the microstructure into spheroids of Si in the Al matrix. This study investigated, for the first time, the local mechanical properties within the SLM material using nanoindentation. This showed a uniform nano-hardness profile that was attributed to the fine microstructure and good dispersion of the alloying elements. Spatial variation within the material was recorded after the T6 heat treatment due to phase transformation. This study is also the first to report on the compressive behaviour of solid SLM material, which is important for developing prediction and simulation models. The heat treatment softened the material and provided it with an increased ductility under indentation, tensile, and compressive types of loading. In addition, the material showed good fatigue performance, which was further improved by heat treatment and machining to obtain a smoother surface roughness. This investigation has, therefore, developed an understanding of the various aspects of the SLM process yielding near fully dense parts and defined the microstructure-mechanical property interrelation promoting the process for Al alloys in a number of industrial sectors

    The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment

    Get PDF
    Selective laser melting (SLM) of aluminium is of research interest because of its potential benefits to high value manufacturing applications in the aerospace and automotive industries. In order to demonstrate the credibility of SLM Al parts, their mechanical properties need to be studied. In this paper, the nano-, micro-, and macro-scale mechanical properties of SLM AlSi10Mg were examined. In addition, the effect of a conventional T6-like heat treatment was investigated and correlated to the generated microstructure. Nanoindentation showed uniform hardness within the SLM material. Significant spatial variation was observed after heat treatment due to phase transformation. It was found that the SLM material's micro-hardness exceeded its die-cast counterpart. Heat treatment softened the material, reducing micro-hardness from 125±1 HV to 100±1 HV. An ultimate tensile strength (333 MPa), surpassing that of the die cast counterpart was achieved, which was slightly reduced by heat treatment (12%) alongside a significant gain in strain-to-failure (~threefold). Significantly high compressive yield strength was recorded for the as-built material with the ability to withstand high compressive strains. The SLM characteristic microstructure yielded enhanced strength under loading, outperforming cast material. The use of a T6-like heat treatment procedure also modified the properties of the material to yield a potentially attractive compromise between the material's strength and ductility making it more suitable for a wider range of applications and opening up further opportunities for the additive manufacturing process and alloy combination

    The Effects of Feature Sizes in Selectively Laser Melted Ti-6Al-4V Parts on the Validity of Optimised Process Parameters

    Get PDF
    Ti-6Al-4V is a popular alloy due to its high strength-to-weight ratio and excellent corrosion resistance. Many applications of additively manufactured Ti-6Al-4V using selective laser melting (SLM) have reached technology readiness. However, issues linked with metallurgical differences in parts manufactured by conventional processes and SLM persist. Very few studies have focused on relating the process parameters to the macroscopic and microscopic properties of parts with different size features. Therefore, the aim of this study was to investigate the effect of the size of features on the density, hardness, microstructural evolution, and mechanical properties of Ti-6Al-4V parts fabricated using a fixed set of parameters. It was found that there is an acceptable range of sizes that can be produced using a fixed set of parameters. Beyond a specific window, the relative density decreased. Upon decreasing the size of a cuboid from (5 × 5 × 5 mm) to (1 × 1 × 5 mm), porosity increased from 0.3% to 4.8%. Within a suitable size range, the microstructure was not significantly affected by size; however, a major change was observed outside the acceptable size window. The size of features played a significant role in the variation of mechanical properties. Under tensile loading, decreasing the gauge size, the ultimate and yield strengths deteriorated. This investigation, therefore, presents an understanding of the correlation between the feature size and process parameters in terms of the microscopic and macroscopic properties of Ti-6Al-4V parts manufactured using SLM. This study also highlights the fact that any set of optimized process parameters will only be valid within a specific size window

    Additive manufacture of an aluminium alloy: processing, microstructure, and mechanical properties

    Get PDF
    Additive manufacturing of aluminium alloys using selective laser melting (SLM) is of research interest nowadays because of its potential benefits in industry sectors such as aerospace and automotive. However, in order to demonstrate the credibility of aluminium SLM for industrial needs, a comprehensive understanding of the interrelation between the process parameters, produced microstructure, and mechanical behaviour is still needed. This thesis aims at contributing to developing this comprehensive understanding through studying the various aspects of the process, with investigation of the powder raw material to the near fully dense samples, focussing on the alloy AlSi10Mg. The primary building blocks in the SLM process are the single tracks. Their formation is affected by the physical properties of the material that control the laser-material interactions. Keyhole mode melting was found to be dominant when processing AlSi10Mg, producing conical-shaped melt pools. Porosity was not evident in single tracks and individual layers. Satellites and balling defects, however, were observed on top of the tracks and layers at higher scan speeds, which contribute to porosity formation with layer progression. The combination of process parameters controls the amount of porosity formed, with the scan speed controlling the type of pore; metallurgical or keyhole pore. A pre-melt scan strategy significantly reduced porosity and successfully produced 99.8% dense samples. Furthermore, the pre-melt scan strategy was seen to effectively reduce the number of pores developed when using powder that does not fully comply with the process standards. The gas flow rate within the process chamber controlled laser spatter and condensate removal during processing, which in its turn affected the degree of porosity in the samples. The SLM process resulted in an AlSi10Mg alloy with a characteristically fine microstructure, with fine equiaxed grains at the melt pool core and coarser elongated grains at the boundary. The material showed a strong texture, owing to directional solidification. Cellular dendritic Al with inter-dendritic Si was observed. The material was subjected to a T6 heat treatment that transformed the microstructure into spheroids of Si in the Al matrix. This study investigated, for the first time, the local mechanical properties within the SLM material using nanoindentation. This showed a uniform nano-hardness profile that was attributed to the fine microstructure and good dispersion of the alloying elements. Spatial variation within the material was recorded after the T6 heat treatment due to phase transformation. This study is also the first to report on the compressive behaviour of solid SLM material, which is important for developing prediction and simulation models. The heat treatment softened the material and provided it with an increased ductility under indentation, tensile, and compressive types of loading. In addition, the material showed good fatigue performance, which was further improved by heat treatment and machining to obtain a smoother surface roughness. This investigation has, therefore, developed an understanding of the various aspects of the SLM process yielding near fully dense parts and defined the microstructure-mechanical property interrelation promoting the process for Al alloys in a number of industrial sectors

    Selective laser melting of aluminium alloys

    Get PDF
    Metal additive manufacturing (AM) processes, such as selective laser melting, enable powdered metals to be formed into arbitrary 3D shapes. For aluminium alloys, which are desirable in many high-value applications for their low density and good mechanical performance, selective laser melting is regarded as challenging due to the difficulties in laser melting aluminium powders. However, a number of studies in recent years have demonstrated successful aluminium processing, and have gone on to explore its potential for use in advanced, AM componentry. In addition to enabling the fabrication of highly complex structures, selective laser melting produces parts with characteristically fine microstructures that yield distinct mechanical properties. Research is rapidly progressing in this field, with promising results opening up a range of possible applications across scientific and industrial sectors. This paper reports on recent developments in this area of research as well as highlighting some key topics that require further attention
    • …
    corecore